Appendix G

Traffic Study Methodology

Traffic Forecasting Model Methodology

In addition to the existing/baseline condition (year 2005), a level of service (LOS) analysis was conducted for the year 2015, which is the year in which the proposed project is scheduled to be open to traffic, and year 2030, which is the design horizon year for the proposed project. To complete this analysis, a traffic forecasting model was developed as part of the study to forecast future traffic volumes with and without the project in the years 2015 and 2030.

The model was based upon the travel demand forecasting model (Port Model) developed for the Ports of Long Beach/Los Angeles Transportation Study (2001). That Port Model, completed in 2000, is based on the Southern California Association of Governments' (SCAG) Regional Travel Demand Forecasting Model. Elements of the SCAG Heavy-Duty Truck (HDT) model were used, as well as input data from the City of Long Beach model and the City of Los Angeles Transportation Improvement Mitigation Program (TIMP) models for Wilmington and San Pedro. TRANPLAN is the software platform used for modeling. Special model features include the following:

Network Coverage

The roadway network used for traffic assignment in the SCAG model was augmented in the area of the ports to include all of the public roadways. Outside the area of the ports, the SCAG 2000 and 2030 roadway networks were used. The future networks include planned and programmed highway improvements included in SCAG's Destination 2030: 2004 Regional Transportation Plan (RTP), which is the current plan for the region in which the project is located. The future year networks do not include truck lanes or other widening on the State Route (SR) 710 freeway nor improvements to the SR 47 Expressway or Schuyler Heim Bridge on SR 47; however, a sensitivity analysis was performed with these improvements in place.

Traffic Analysis Zone Disaggregation

The traffic analysis zones (TAZs) used for trip generation in the SCAG model were disaggregated into more refined zones within the area of the ports. A TAZ was provided for each of the ports' container terminals.

Coding of Highway Grades and Reduced Capacities

An important feature of the model, which was explicitly accounted for and coded to the network, are locations of steep uphill and downhill grades. These include the Gerald Desmond Bridge, Schuyler Heim Bridge, and Ocean Boulevard/SR 710 connector ramps.

Implementation of Truck Passenger Car Equivalencies (PCEs)

The presence of vehicles other than passenger cars in the traffic stream affects traffic flow in two ways: (1) these vehicles, which are much larger than passenger cars, occupy more roadway space (and capacity) than individual passenger cars, (2) the operational capabilities of these vehicles, including acceleration, deceleration, and maintenance of speed, are generally inferior to passenger cars and result in the formation of large gaps in the traffic stream that reduce highway capacity. On long sustained grades, and segments with impaired capacities where trucks operate considerably slower, formation of these large gaps can have a profound impact on the traffic stream. The above characteristics are also accounted for in the model as discussed below.

Grades and Passenger Car Equivalents

Grades are coded in the TRANPLAN network as they are in the field to an accuracy of one percent. The grade is coded in directly, and then TRANPLAN has a specialized PCE procedure that converts assigned truck traffic to PCEs. It is not impedance; it is simply a conversion to PCEs. In this way, the effect of the truck volume is accounted for in the analysis using PCEs. The PCE factors are the same as those used in the Southern California HDT Model, which was based on the 1997 Highway Capacity Manual (HCM) PCE factors. They were developed by SCAG for the HDT model, and they include a sliding scale of PCE factors that takes into account the grade, the length of grade, and the percent of truck traffic.

While the SCAG PCE factors were used in the assignment of forecast traffic to the roadway network, they were not used in the assessment of roadway LOS. HCM vehicle density calculations were used to determine LOS. To adhere to the HCM procedures more closely, HCM PCE factors were used in LOS analysis. A standardized set of port-provided PCE factors for all trucks based on the HCM factors was utilized in the LOS analysis. The PCE factors for each vehicle type used in the LOS analysis are:

- 1.0 for motorcycles, cars, pickup trucks, sport-utility vehicles (SUVs), and vans;
- 1.1 for bobtails (tractor trailer combinations operated without a trailer);

- 2.0 for buses, 2-axle trucks, and 3-axle trucks; and
- 2.0 for container trucks, chassis trucks, and all other 4-axle or larger trucks.

Trips from Other Non-Port Zones

Trips generated by major developments within the area of the ports for which specific trip generation rates were not included in the Port Model were added to the model at the TAZ locations. Those developments include, but are not limited to, Queensway Bay, Cabrillo Marina, and the Port of Los Angeles Industrial Center.

Port Area Trip Distribution

Distribution of port trips was accomplished predominantly through information developed in the Ports Transportation Study, including results of user surveys and traffic counts. The port trip tables were allocated to known locations for major off-dock rail destinations, including vards. warehouse/industrial facilities, and other intermodal transfer facilities. The locations of these facilities by TAZ were identified, and they were explicitly coded into the trip tables. These port trips are not part of the gravity model distribution process. Both trips internal to the ports and with one trip end internal to the ports were addressed using this methodology.

2015 and 2030 Port Trip Tables

The port trip tables were developed in two parts. First, the port model zone trip tables were developed in a similar manner to those used in the Ports Transportation Study and model. Those trip tables were developed based on a detailed port area zone system and specialized trip generation rates for autos and trucks in the port. Second, special trip generation rates for autos were developed for the port studies and applied to 2015 and 2030 TEU forecasts. Truck trip generation for container terminals was developed using the QuickTrip model, which is discussed below.

2030 Regional Trip Tables

The 2030 regional trip tables for the Port Model were developed using the SCAG 2030 trip tables. Regional person-trip productions and attractions on a zonal level were obtained from SCAG for the entire SCAG modeling area for year 2030. For the traffic zones within the ports, trip productions and attractions were disaggregated to the more refined zones described above. The port and regional person productions and attractions were then converted into vehicle trips based on SCAG's socio-economic data (SED), trip distribution

model, mode-split factors, and average autooccupancy tables. Trips included in the model are drive alone, high-occupancy vehicle (HOV), HOV 3+, port autos, light heavy-duty trucks, medium heavy-duty trucks, heavy heavy-duty trucks, bobtails, chassis, and container trucks. Consistent with the SCAG model, the year 2030 trip tables reflect the throughput of 42 million TEUs at the ports.

Traffic Assignment

The total daily trips for all types of land uses in the region were allocated into SCAG's AM, MD, PM, and off-peak periods. Since the Port Model analyzes conditions for the AM, MD, and PM peak hours, the SCAG model data were converted to peak-hour values. This was accomplished by the application of conversion factors developed in cooperation with SCAG. SCAG previously applied similar factors to perform peak-hour analysis in other areas of the region. The factors were applied and calibrated as part of the original Port Model development in 1999 and have been consistently used since then. The resulting models include unique hourly trip tables for the peak activity hours of the ports. The trip tables contain peak-hour trip generation estimates that were developed specifically for the port zones. The hours for which trip tables have been developed are 8:00 AM to 9:00 AM, 2:00 PM to 3:00 PM, and 4:00 PM to 5:00 PM, representing the AM peak hour, MD peak hour, and PM peak hour, respectively. The TRANPLAN model uses an Equilibrium Traffic Assignment method, which is an iterative process. After each of the model iterations, the roadway volume/capacity ratios are calculated, and traffic is then reassigned to the shortest route until a predefined systemwide "closure" is achieved between two consecutive iterations. Equilibrium-type multi-class assignments are used.

QuickTrip Model

The QuickTrip model is well documented in the *Ports of Long Beach and Los Angeles Transportation Study* (2001). It is a spreadsheet model for truck trip generation analysis that was developed in a collaborative effort between the staff of both ports and a team of consultants. The model builds upon a gate trip generation model that was previously developed, with considerable refinements. It includes detailed input variables, such as mode split (rail versus truck moves), time of day factoring, weekend moves, empty return factors, and other characteristics that affect the numbers of trucks through the gates. The end product is a forecast of truck trip generation, by

type of truck trip, for each hour of the day, by direction. The model was carefully validated against gate counts at each container terminal gate, and it was found to replicate within 2 to 12 percent overall, depending on the peak hour.

Post-Processing of Model Assignment Results

Model volume post processing is a procedure that is applied to remove any model validation differences and make the future roadway, ramp, and intersection forecasts more accurate at the intersection and link levels. The intersection turning movement volumes and the link volumes on roadway segments from the year 2005 model were compared to actual turning movement and link volumes from ground counts. Based on that comparison, adjustment factors (the difference in volumes by traffic movement) are developed for the model volumes so that they match the ground counts. That same adjustment factor is then carried forward to the future 2030 model. For example, if the model underestimates a given intersection traffic movement by 50 vehicles, then an adjustment of 50 added vehicles is made to the model output for that movement's volume for model runs of forecast years. In this way, the localized micro-level inaccuracies in the model are accounted for and corrected at the intersection level.

Forecasting Model Validation (Base Year 2005)

Within the port area, the model has been validated for individual roadway links. Model validation concentrated on Ocean Boulevard/ Seaside Avenue, from the vicinity of SR-710/downtown Long Beach (in the POLB) to Navv Way (in the POLA). Traffic ground counts were previously collected in August and September 2005 on two consecutive weekdays. Count locations are shown in Table G-1. The port area travel demand model was updated from 1999 base year conditions to 2005 base year conditions. To develop regional background trips, the SCAG trip regional tables were interpolated between the 1999 model trip tables and the 2030 model trip tables. This accounted for trips outside of the port area. For Port-area trips, the QuickTrip truck generation model was utilized to estimate 2005 truck trips. Year 2005 port area auto trips were estimated using auto trip generation rates developed for the Port of Long Beach and Los Angeles Transportation Study. For 2005, the following TEU throughput totals were used to develop the QuickTrip model truck trip generation forecasts: 6.8 million TEUs per year (616,330 per month) for the POLB, and 7.5 million TEUs per year (681,100 per month) for the POLA.

The goal of model validation was to adjust model parameters so that the model will most closely match around counts. within acceptable thresholds. Typically, subregional travel demand models are validated at the screenline level and on major facilities. For this project, however, a screenline approach was not appropriate since the focus area consists of Ocean Boulevard and the bridge facility and nearby ramp systems; therefore, the validation focused on the specific roadways themselves. Based on the National Cooperative Highway Research Program (NCHRP) Report 255 "Highway Traffic Data for Urbanized Area Project Planning and Design," typical "acceptable deviation" for individual roadway links with volumes of 50,000 vehicles per day or less (Ocean Boulevard carries an ADT of just under 60,000 vehicles currently) is 20 percent (NCHRP Report 255, page 41, Figure A-3).

Ground counts are known to vary by 10 to 20 percent depending on the prevailing conditions on the days that the counts were collected; therefore, a model that replicates counts to within that threshold for major facilities is considered to be accurately estimating travel patterns. This is also consistent with the NCHRP report, as noted in the prior paragraph. For individual lower volume links, such as on- and off-ramps, validation to those thresholds is not feasible, as they carry very low volumes and are subject to significant fluctuation in daily ground counts; therefore, the focus of model validation was on Ocean Boulevard itself, although every ramp was also reviewed during the validation process.

The validation results at the link level indicate that the model is replicating existing/baseline volumes to within 10 to 25 percent for nearly all link locations along Ocean Boulevard/Seaside Avenue at the highest volume locations. During the AM peak hour, 8 locations have model volumes within 10 percent of ground counts, and during the PM peak hour, 8 locations are within 25 percent. Truck validation differences are somewhat larger than auto or total vehicles in percentage terms. This is to be expected, as truck volumes are only 30 to 35 percent of auto volumes at most locations. Lower-volume facilities. includina ramps, tend to have somewhat higher differences between ground counts and the model; however, many of those locations carry very few trips (less than 50 to 100 trips in many locations). For lowervolume streets and ramps, validation is based on parameters contained in the NCHRP Report 255.

Count Locations and Specifications Summary											
Location	Type of Count	Time Period									
Terminal Island Freeway and Ocean Boulevard intersection	Manual	6-9 AM, 2-6 PM									
Pier S Avenue and Ocean Boulevard intersection	Manual	6-9 AM, 2-6 PM									
Terminal Island Freeway SB Off-Ramp and New Dock Street intersection	Manual	6-9AM; 2-6 PM									
Terminal Island Freeway NB On-Ramp and New Dock Street Intersection	Manual	6-9 AM, 2-6 PM									
Pier S Avenue and New Dock Street intersection	Manual	6-9 AM, 2-6 PM									
Navy Way and Seaside Avenue intersection	Manual	6-9 AM, 2-6 PM									
Pico Avenue / Pier B Street and 9th Street intersection	Manual	6-9 AM, 2-6 PM									
Pico Avenue and Pier C Street intersection	Manual	6-9 AM, 2-6 PM									
Pico Avenue and Pier D Street intersection	Manual	6-9 AM, 2-6 PM									
Pico Avenue and Broadway intersection	Manual	6-9 AM, 2-6 PM									
Pico Avenue and Pier E Street intersection	Manual	6-9 AM, 2-6 PM									
Pico Avenue WB Off-Ramp from Ocean Boulevard (one-lane)	24-Hour Machine	24-hour									
Pico Avenue WB On-Ramp to Ocean Boulevard (one-lane)	24-Hour Machine	24-hour									
Pico Avenue EB Off-Ramps from Ocean Boulevard (one-lane)	24-Hour Machine	24-hour									
Pico Avenue. EB on-ramp to Ocean Boulevard (one-lane)	24-Hour Machine	24-hour									
Gate 5 / Pier T Avenue WB Off-Ramp (one-lane)	24-Hour Machine	24-hour									
SB SR 710 Connector Ramp to WB Ocean Boulevard (two-lane ramp)	24-Hour Machine	24-hour									
NB SR 710 Connector Ramp from EB Ocean Boulevard (two-lane ramp)	24-Hour Machine	24-hour									
Ocean Boulevard east of the Pico Avenue ramps, but west of the Harbor Scenic Drive On-Ramp	24-Hour Machine	24-hour									

- - - -

Source: Iteris, 2008.

To achieve acceptable validation results, multiple model runs were made for each peak hour, and a series of model adjustments were made. The adjustments included the following:

- Increasing or decreasing facility speeds and capacities on a segment-by-segment basis where assigned volumes where either too high or too low, with different adjustments made by peak hour as appropriate;
- Correcting the model network where errors in coding were detected;
- Adjusting the TAZ loading points to provide more accurate representation of travel patterns from local streets to the arterial system; and
- Refining the regional peak-hour trip tables to achieve the proper level of background traffic.

Year 2015 Model Development

A key task during development of the 2015 model for both ports was to generate 2015 trip ends based on SCAG's regional trip tables. Regional production and attraction of "person trips" and regional HDT trip tables were obtained from

SCAG for 2005 and 2030. Use of the regional 2030 trip tables ensures that cumulative traffic from planned growth region wide is included in the model forecasts. The SCAG regional trip table for 2015 was interpolated between 2005 and 2030. The person trips were aggregated to the current Port Model's trip purposes and zone system. The trip distribution models were then run. Next, the person trips were converted to vehicle trips using the SCAG mode choice model. Time-of-day trip tables were generated using the SCAG peak period and peak-hour adjustment factors.

A second key task was development of portspecific trip tables for 2015 trips to and from port zones themselves. Use of the 2015 forecast trip tables ensures that cumulative traffic from planned growth in the vicinity of the ports and not included in the SCAG regional projections is included in the model forecasts. The port area peak-hour auto, bobtail, chassis, and container trip tables were generated based on the 2015 TEUs using the Quick Trip model. The total estimated TEU throughput for both ports for 2015 is approximately 27 million TEUs. For the peak month, this equates to approximately 2.5 million TEUs. The TEU throughput for each terminal was

provided by the POLB. **Table G-2** summarizes the 2015 TEU throughput by terminal and the resultant truck and auto trips. Truck trips are disaggregated into bobtail, chassis, and container truck trips, representing the major types of truck trips in the ports. For both ports, the combined forecast 2015 trip generation totals for container terminals accounts for approximately 90 percent of port truck trips.

A third key task was to develop model roadway networks for the project conditions with and without the proposed bridge. New links were added to the network, and new lane configurations were coded in the model network based on the configuration with each condition. Finally, the full model, including post-processing, was run and traffic volume forecasts were generated.

Year 2030 Model Development

The first task during development of the 2030 model for both ports was to generate 2030 trip ends based on SCAG's regional trip tables. Regional production and attraction of "person trips" and regional HDT trip tables were obtained from SCAG for 2030. The person trips were aggregated to the current Port Model's trip purposes and zone system. The trip distribution models were then run. Next, the person trips were converted to vehicle trips, and time-of-day trip tables were generated.

The second task was development of port-specific trip tables for 2030 trips to and from port zones themselves. The port area peak-hour auto, bobtail, chassis, and container trip tables were generated based on the 2030 TEUs using the Quick Trip model. The total estimated TEU throughput for both ports for 2030 is approximately 42 million TEUs. For the peak month, this equates to approximately 3.8 million TEUs. The TEU throughput for each terminal was provided by the POLB. Table G-3 summarizes the 2030 TEU throughput by terminal and the resultant truck and auto trips. Truck trips are disaggregated into bobtail, chassis, and container truck trips, representing the major types of truck trips in the ports. For both ports, the combined forecast 2030 trip generation totals for container terminals accounts for approximately 90 percent of port truck trips.

The third task was to develop model roadway networks for the project conditions with and without the proposed bridge. New links were added to the network, and new lane configurations were coded in the model network based on the configuration with each condition. Finally, the full model, including post-processing, was run, and traffic volume forecasts were generated.

Table G-2

2015 Peak Month Container Terminal Trip Generation Estimates

Voa	r 2015	AM Peak Hour (8:00AM - 9:00AM)													
Tear 2015		Au	tos	Bol	btail	Cha	ssis	Cont	tainer	Тс	tal Tru	cks	Total Vehicles		
Terminal	TEU	In	Out	In	Out	In	Out	In	Out	In	Out	Total	In	Out	Total
Pier A	166,252	135	135	85	56	26	13	120	94	232	163	395	367	298	664
Pier C	38.886	31	31	26	17	14	5	32	28	72	50	122	103	82	185
Pier DFF	200 420	162	162	82	49	11	9	129	86	221	144	365	383	307	690
Pier G.I	184 557	149	149	101	57	38	14	137	95	276	166	442	426	315	741
Pior I South	237 335	102	102	110	65	23	14	166	111	200	100	180	102	383	97/
Dior S	201,000	74	74	16	20	12	7	66	51	124	00	212	100	162	261
Pier J	91,004	74	74	40	30	13	1	100	104	124	00	213	199	103	1.050
	200,040	210	210	142	00	50	19	190	134	300	233	021	004	449	1,055
Total POLB	1,185,959	961	961	592	355	175	81	846	599	1,613	1,034	2,648	2,574	1,995	4,569
YML	213,496	173	173	116	69	43	17	158	115	317	200	517	490	373	863
Trapac	139,428	113	113	76	46	28	11	104	76	208	133	341	321	246	567
SSAT	57,641	47	47	39	26	21	8	47	42	106	76	183	153	123	276
TI East	149,922	121	121	69	42	14	9	104	72	188	123	310	309	244	553
TI West	186,948	151	151	96	57	30	13	135	96	260	165	426	412	317	729
Pier 300	197,156	160	160	82	49	7	9	133	86	221	144	365	381	304	685
Pier 400	329,755	267	267	136	79	10	14	221	139	367	233	600	634	500	1,134
Total POLA	1,274,346	1,032	1,032	613	368	152	81	903	626	1,668	1,075	2,742	2,700	2,107	4,807
Total Ports	2,460,305	1.993	1.993	1.205	722	327	162	1.749	1.225	3.281	2.109	5.390	5.274	4.102	9.376
	2,100,000	.,	1,000	1,200		02.	102	1,1 10	1,1220	0,201	2,100	0,000	0,211	1,102	0,010
Year 2015		۸	tos	Bol	htail	MD Peak Hou			(2:00PN	<u>и - 3:00</u> та	PM)	cks	Tet	tal Vah	icles
Torminal	TEU	- Au	04	10	0		04	1-	04	10	04	Total	10		Total
Diar A	166.050	- IN	Out	IN 00	Out	21	Out	140	160	260	000	FAG	210	262	I Otal
Pier A	100,252	50	00	99	95	31	22	140	100	209	211	040	319	302	000
Pier C	38,886	12	20	30	30	16	9	37	49	83	88	1/1	95	107	202
Pier DEF	200,420	60	102	95	94	12	18	150	164	256	276	532	316	378	694
Pier GJ	184,557	55	94	117	112	44	27	159	187	320	327	647	376	421	797
Pier J South	237,335	71	121	128	121	27	25	192	207	347	353	700	418	474	892
Pier S	91,664	27	47	53	52	15	12	76	88	144	152	296	172	199	371
Pier T	266,845	80	136	165	156	58	37	228	260	450	453	903	530	589	1,119
Total POLB	1,185,959	356	605	687	660	203	151	981	1,114	1,870	1,925	3,795	2,226	2,529	4,756
VMI	213 /06	64	100	13/	130	40	30	193	216	367	377	745	121	186	017
	213,490	40	74	134	130	49	32	100	210	044	050	140	431	400	000
Парас	139,420	42	/1	00	00	33	21	120	144	241	202	493	203	323	000
SSAT	57,641	17	29	45	45	24	13	55	12	123	130	253	141	159	300
TLEast	149,922	45	76	80	11	16	16	121	133	217	227	444	262	303	566
11 West	186,948	56	95	111	111	34	26	157	187	302	324	626	358	419	///
Pier 300	197,156	59	101	95	94	8	17	154	165	256	276	532	316	376	692
Pier 400	329,755	99	168	157	154	12	28	257	271	426	454	880	525	622	1,147
Total POLA	1,274,346	382	650	711	698	176	153	1,047	1,188	1,933	2,038	3,972	2,316	2,688	5,004
Total Ports	2 460 305	738	1 255	1 307	1 357	370	303	2 0 2 8	2 302	3 804	3 963	7 766	1 512	5 218	9 759
TUIAI FUIIS	2,400,303	730	1,200	1,397	1,337	519	303	2,020	2,302	3,004	3,903	7,700	4,042	5,210	9,139
Yea	r 2015	A	400	Bal	htail	Pl	M Peak	Hour	(4:00PN	/ - 5:00	PM)	aka	Tel	hal Vak	ialaa
Tomates	TEU	Au	05	BUI		Una	0	Com				CKS	10		Tatal
Terminal	IEU	105	Out	In	Out	In	Out		Out	IN	Out	Total	In	Out	Total
	166,252	125	243	53	/8	1/	18	/6	132	146	229	3/4	270	4/1	/42
	38,886	29	5/	16	21	9	6	20	34	45	61	106	/4	11/	192
Pier DEF	200,420	150	293	51	66	7	13	81	115	139	194	333	289	487	776
Pier GJ	184,557	138	269	64	96	24	24	86	160	174	280	453	312	549	861
Pier J South	237,335	178	347	69	107	15	23	104	183	188	313	501	366	659	1,026
Pier S	91,664	69	134	29	36	8	8	41	61	78	105	183	147	239	386
Pier T	266,845	200	390	89	142	31	34	123	238	244	414	658	444	804	1,248
Total POLB	1,185,959	889	1,732	372	547	110	125	532	923	1,014	1,595	2,609	1,903	3,327	5,230
X/MI	010 400	100	240	70	100	07	00	00	100	100	244	E40	250	605	004
	213,496	160	312	13	801	21	26	99	180	199	314	513	359	025	984
I rapac	139,428	105	204	48	66	18	16	65	109	131	192	322	235	395	630
SSAT	57,641	43	84	24	31	13	9	30	50	67	89	156	110	174	284
TI East	149,922	112	219	43	60	9	13	66	103	118	176	294	230	395	625
TI West	186,948	140	273	60	78	19	18	85	132	164	228	392	304	501	805
Pier 300	197,156	148	288	51	66	4	12	83	116	139	194	333	287	482	769
Pier 400	329,755	247	481	85	111	6	20	139	194	231	325	556	478	806	1,285
Total POLA	1,274,346	956	1,861	385	519	95	114	567	884	1,048	1,518	2,565	2,004	3,378	5,382
Total Ports	2 460 305	1 8/5	3 502	757	1.066	205	230	1 000	1 807	2.062	3 112	5 175	3 007	6 705	10 612

Source: Iteris, 2008.

AM Peak Hour (8:00AM - 9:00AM)															
Year 2030		Διι	tos	Boh	tail	Cha		Cont	ainer	To	tal Tru	cks	Total Vehicles		
Terminal TELL		In		In	Out	In	Out	In	Out	In		Total	In		Total
Pior A	280.471	234	234	1/3	120	51	20	107	201	300	350	740	625	585	1 200
	209,471	42	42	140	120	17	23	197	201	390	75	140	122	110	7,209
	302,902	43	43	33	20	17	1	40	41	90	75	620	133	F 1 1	201
	302,120	245	240	120	102	29	22	200	175	340	299	039	000	044	1,129
Pier GJ	293,039	230	230	160	130	10	35	200	220	430	399	031	0/0	037	1,313
Pier J South	385,840	313	313	152	124	17	24	242	217	410	364	115	723	6//	1,400
Pier S	121,940	99	99	63	49	25	12	84	81	1/2	142	314	270	241	511
Pier I	402,402	326	326	215	1//	91	45	282	291	589	513	1,102	915	839	1,754
Total POLB	1,848,574	1,497	1,497	890	736	301	1/4	1,238	1,233	2,429	2,143	4,572	3,926	3,640	7,566
VМI	330 721	275	275	137	115	47	20	188	103	372	337	709	648	612	1 260
Tranac	205.005	166	166	82	66	28	16	113	110	223	102	/16	380	358	7/18
SSAT	100 901	82	82	55	45	32	1/	64	71	150	132	280	232	212	140
TI Fast	213 158	173	173	95	75	/1	20	122	125	258	220	178	/30	303	823
TLWost	200 472	235	235	110	102	43	20	161	171	200	220	623	550	535	1 003
Dior 200	290,472	233	233	110	00	40	20	140	1/1	200	299	556	515	475	1,095
Pier 300	200,077	217	454	220	100	40	47	211	216	290	200	1 175	1 077	475	390
Tetal DOL A	1 077 520	404	404	229	100	00	47	311	310	023	1 000	1,175	1,077	1,005	2,002
TOLALPOLA	1,977,530	1,602	1,002	021	000	312	174	1,110	1,134	2,249	1,900	4,237	3,001	3,590	7,440
Total Ports	3,826,104	3,099	3,099	1,717	1,416	613	348	2,348	2,366	4,678	4,131	8,808	7,777	7,230	15,006
									10.000						
Year	r 2030	A		Del	4-11	MD Peak Hour (2:00P				M - 3:0	OPM)		Tetel Makinta		
- · ·		Au		BOD		Cna	SSIS	Cont	ainer	10		CKS	10	tai veni	CIES
District	1EU	In	Out	In	Out	In	Out	In	Out	In	Out	Iotal	In	Out	Iotal
Pier A	289,471	87	148	166	164	59	39	228	2/4	452	4/8	930	539	620	1,165
	52,962	16	21	38	38	20	11	40	01	105	110	215	121	137	258
Pier DEF	302,120	91	154	145	138	34	30	215	235	394	403	/9/	485	557	1,042
Pier GJ	293,839	88	150	185	182	81	47	241	299	507	528	1,035	595	678	1,273
Pier J South	385,840	116	197	176	163	20	31	280	285	476	479	954	591	676	1,267
Pier S	121,940	37	62	73	73	28	18	98	121	199	213	411	235	275	510
Pier T	402,402	121	205	249	234	106	60	327	385	683	679	1,361	803	884	1,687
Total POLB	1,848,574	555	943	1,032	992	348	236	1,435	1,662	2,816	2,889	5,705	3,370	3,832	7,202
VMI	330 721	102	173	150	155	54	30	218	250	132	453	885	534	627	1 160
Tropoo	205.005	62	105	159	155	22	24	121	259	452	400	526	220	2027	702
CONT CONT	205,005	20	F1	95	95	32	24	74	109	209	105	260	320	202	102
JULIA	100,901	30	100	04	04	37	20	14	102	174	100	300	205	237	441
TI East	213,158	04	109	110	110	47	29	142	181	299	320	519	363	429	192
Dise 200	290,472	0/	140	100	100	50	34	10/	231	3/5	403	110	402	100	1,013
Pier 300	268,077	80	137	127	121	46	30	173	202	340	353	698	420	489	916
Pier 400	560,196	168	286	266	250	96	62	361	418	723	730	1,453	891	1,016	1,907
Total POLA	1,977,530	593	1,009	959	931	362	238	1,287	1,552	2,607	2,722	5,329	3,200	3,730	6,930
Total Ports	3,826,104	1,148	1,951	1,990	1,923	710	474	2,722	3,213	5,423	5,611	11,033	6,570	7,562	14,132
	· · · · ·														
Year 2030		A	taa	Pak	tail	P Cha	M Peal	K Hour	(4:00P	M - 5:00	JPM)	oko	<u>т</u> а	tal Vahi	alaa
Torminal	TEU	Au	0+	DOL.			0+	Lo	Out	In		Total	10		Total
Diar A	1EU 200.471	217	400	In	110	1 I I		104	100	245	00t	Total	460	767	1 000
Pier C	209,471	217	423	90	110	32	20	124	190	240	345	122	402	101	1,230
	52,962	40	11	21	20	10	0	20	42	014	70	133	90	104	200
Pier DEF	302,120	227	441	79	118	18	26	117	202	214	346	560	440	/8/	1,228
	293,839	220	429	100	139	44	30	130	229	2/5	404	0/9	495	033	1,328
Pier J South	385,840	289	563	95	151	11	29	152	264	258	444	701	547	1,007	1,554
Pier S	121,940	91	178	39	51	15	13	53	84	108	148	256	199	326	525
Pier I	402,402	302	588	135	223	57	57	1//	368	370	649	1,019	672	1,236	1,908
Total POLB	1,848,574	1,386	2,699	559	828	189	196	//8	1,388	1,526	2,412	3,938	2,912	5,111	8,023
VMI	330 721	255	196	86	115	20	20	118	102	234	336	570	180	832	1 3 2 1
Tranac	205.005	154	200	52	67	17	17	71	112	1/0	106	327	204	406	700
SCAT	100 001	76	233	34	11	20	14	40	71	04	120	2021	170	490 276	130
TLEast	212 150	160	211	54	+4 77	20	20	40	107	34	129	223	322	210 526	440 950
TI Wost	213,130	210	404	75	07	20	20	101	162	202	220	107	401	700	1 1 2 0
Dior 200	290,472	201	424	10	91 105	21	24	04	103	203	204	407	421	100	1,129
PIEF 300	200,077	201	391	69	105	∠5 50	∠b	94	1/6	187	307	494	389	098	1,087
Pier 400	560,196	420	818	144	226	52	5/	196	3/8	392	661	1,053	812	1,479	2,291
TOTAL POLA	1,977,530	1,483	∠,ŏŏ/	52U	132	190	10/	09/	1,220	1,413	2,138	3,551	∠,ŏ96	ə,025	1,922
Total Ports	3 826 104	2 870	5 586	1 079	1 560	385	382	1 / 75	2 608	2 0 3 0	4 550	7 / 80	5 800	10 126	15.045

Table G-3

2030 Peak Month Container Terminal Trip Generation

Source: Iteris, 2008

This page intentionally left blank.