Solid Waste Management Vision of Los Angeles County

December 4, 2018

UCLA

Extension

COBY SKYE

Los Angeles County Public Works

EUGENE TSENG

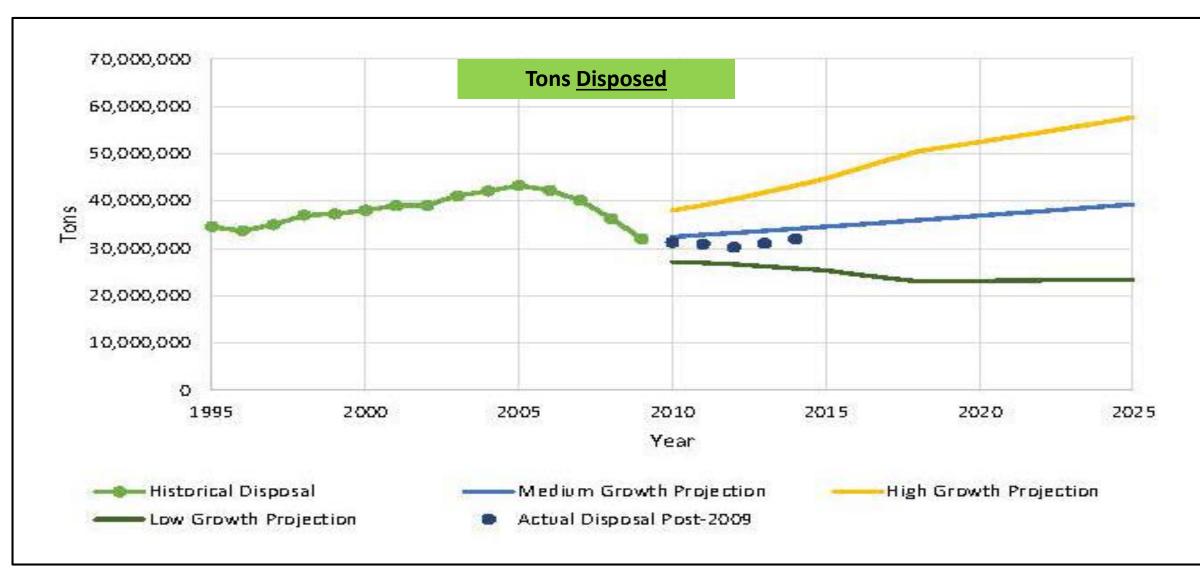
UCLA Engineering Extension, Recycling / Solid Waste Management Program;

UWLA School of Law; Environmental Law;

CSUN Mechanical Engineering Department

Overview

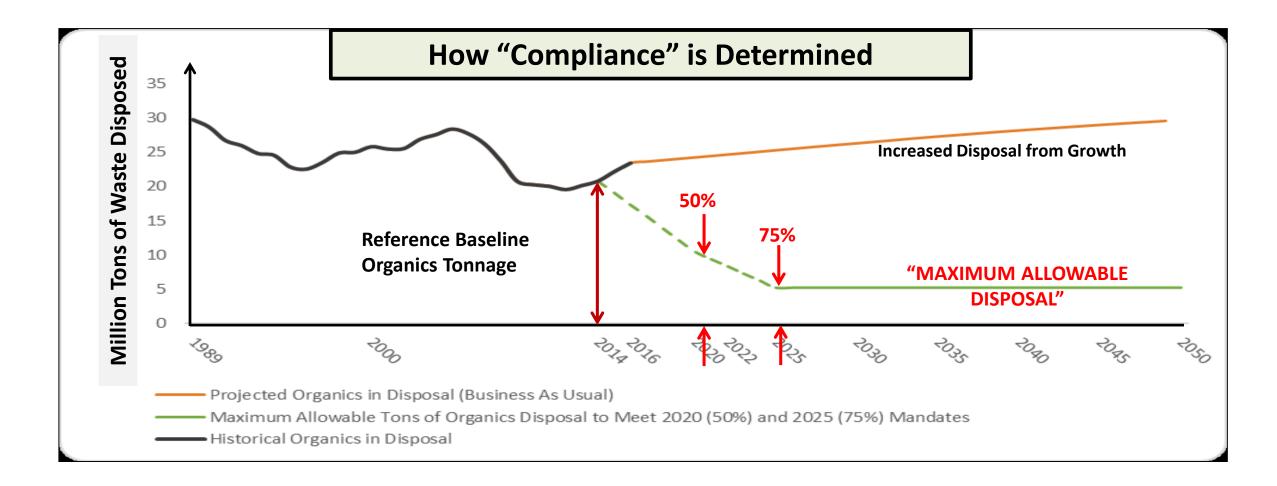
- State Legislation
- Solid Waste Management Paradigm
- Alternative Waste Management Technologies
 - Biological Conversion Technologies
 - Thermal Conversion Technologies
- Emissions Analysis
- Facility Examples
- Key Takeaways
- Discussion and Questions


STATE LEGISLATION

Solid Waste Laws

- Assembly Bill 939 (1989)
 - Mandates local jurisdictions to achieve 50% diversion of solid waste by the year 2000
- Assembly Bill 341 (2011) -
 - Establishes statewide goal to achieve 75% diversion of solid waste by 2020
 - Requires mandatory commercial recycling services for large generators

State of Recycling in California (2016)


Organic Waste Laws

- Organic waste includes food waste, green waste, wood waste, and food-soiled paper
- Assembly Bill 1826 (2014)
 - Requires mandatory commercial organic waste recycling services for large organic waste generators
- Senate Bill 1383 (2016)
 - Establishes statewide goal of 50% reduction of organic waste disposal by 2020 and 75% reduction by 2025
 - Establishes statewide goal to recover of 20% of edible food disposed by 2025
 - Requires mandatory organic waste collection services for residents, business, municipal facilities by 2022

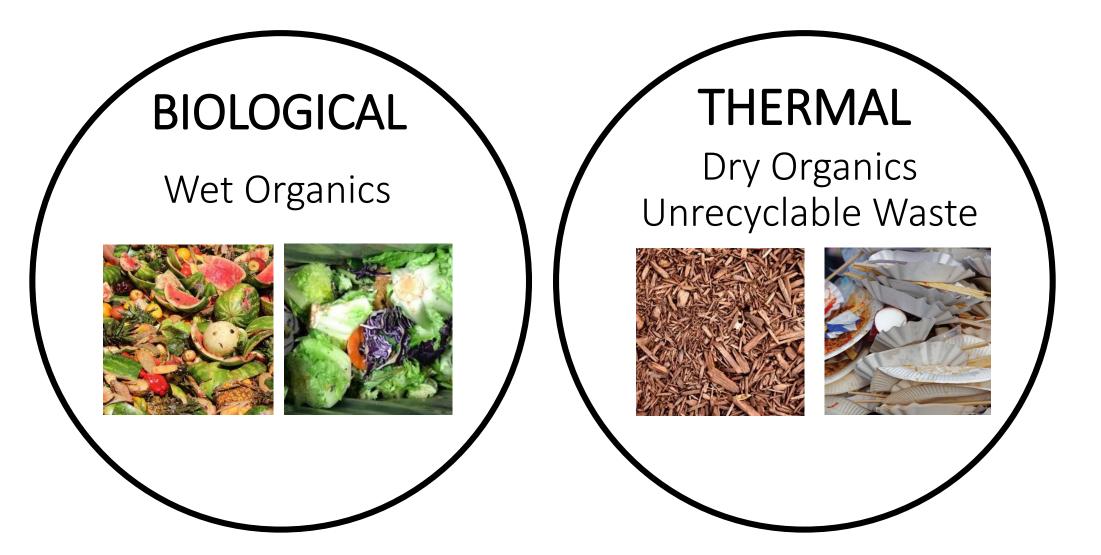
Senate Bill 1383

Greenhouse Gas Emission Reduction Laws

- Assembly Bill 32 (2006)
 - Requires California to reduce statewide greenhouse gas (GHG) emissions to 1990 levels by 2020
- Senate Bill 32 (2016)
 - Requires California to reduce statewide GHG emissions to 40% below the 1990 levels by 2030

SOLID WASTE MANAGEMENT PARADIGM

Current Typical Solid Waste Management



Waste Management Paradigm

ALTERNATIVE WASTE MANAGEMENT TECHNOLGIES

Alternatives for Waste Materials

BIOLOGICAL CONVERSION TECHNOLOGIES

Wet Organic Waste Solutions – Biological Conversion Technologies

- Composting
 - Produces a stable soil amendment
- Anaerobic digestion
 - Produces biogas and solid residual digestate
 - Feedstocks with higher moisture content are preferable
 - Food waste
 - Fats, oils, and grease (FOG)

Operating Biological Facilities

Bioenergy (Food Waste) Japan

Madrid, Spain

County Sanitation Districts, Carson CA

Harvest Power, Florida

CR&R, Perris CA

THERMAL CONVERSION TECHNOLOGIES

Dry Organic and Inorganic Fraction of Waste – Transformation and Thermal Conversion Technologies

- Solutions for dry organic waste, contaminated waste & unrecyclable solid waste
 - Transformation
 - Incineration of waste to recover energy
 - Used to produce electricity
 - Advanced Thermal Conversion
 - Gasification or Pyrolysis
 - Used to produce electricity, fuel, and/or soil amendments

Why We Need Transformation and Thermal Conversion Technologies

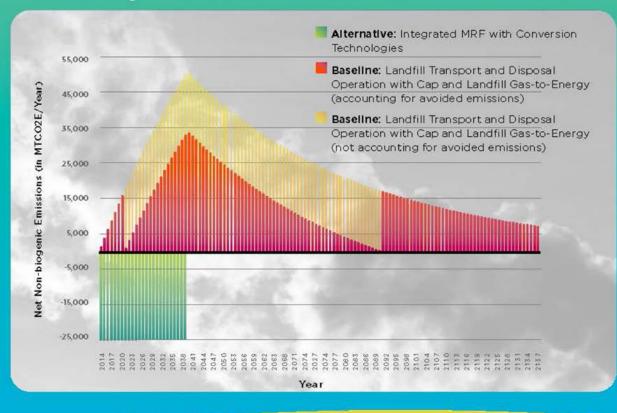
- Only so much of our waste stream is practically recyclable
 - Items like disposable diapers, hybrid materials (paper glued to plastic), medical waste, etc. cannot be recovered for recycling
- New 'China Sword' policy shows overreliance on foreign markets
- Only 2 options for the remainder: landfills or thermal treatment

EMISSIONS ANALYSIS

Comparative Analysis

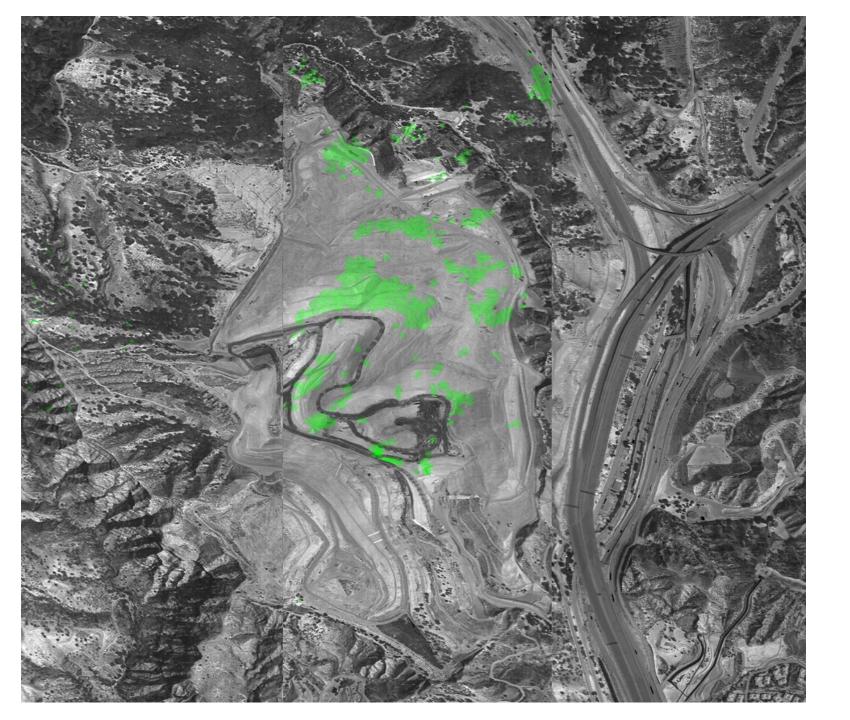
Mixed Waste MRF Residuals to Integrated MRF with Conversion Technologies

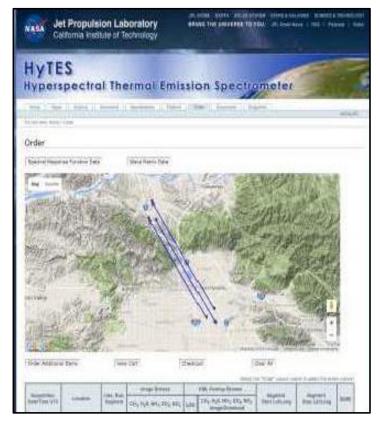
Alternative Technologies Emissions



Comparative Greenhouse Gas Emissions Analysis:

Briefing Report


An Integrated Materials Recovery Facility (MRF) with Conversion Technologies will achieve a net reduction in cumulative greenhouse gas emissions as compared to landfilling post-recycled residuals from a mixed-waste MRF.


Net Non-Biogenic Emissions Over Time: Baseline vs. Alternative Scenario

County of Los Angeles Department of Public Works 900 South Fremont Avenue, Alhambra, CA 91803 www.CleanLA.com www.SoCalConversion.com

NASA / JPL July 2014

Methane Emissions from Landfill

Emissions Meets Established Limits

.1	Measured Data												
	Emission	ssion	ing DXNs emi										
Measured Resu ng-TEQ/Nm ³	Standard ng-TEQ/Nm ³	SCR	Activated Carbon Injection	Boiler + Gas Cooling Tower	Hybrid ACC	Two-way Flue Gas Furnace	Facility	No.					
0.00043 0.00043 0.0027	0.1	0	0	0	0	0	S-City 90 t/d × 3	1					
0.0087 0.0027	0.05	0	0	0	0	0	K-City 140 t/d × 2	2					
0.0000065 0.0008	0.1	0	0	0	0	0	O-City 450 t/d × 2	3					
0.017	0.1		0		0	0	K-City 150 t/d × 1	4					
0.016 0.028	0.1	0	0	0	0	0	R-City 90 t/d × 2	5					
0.00026 0.00021 0.00045	0.1	0	0	0	0	0	Y-City 400 t/d × 3	6					
0.0027 0.03 0.0028	0.1	0	0	0	0	ο	M-City 135 t/d × 3	7					

消定結果の欄は上部	2007 Februttor	Regalite						
40 MR4A	#12	18.4~18.5	18.6~18.7	18.8~18.9	18.10~18.12	18.12~19.1	19.2~19.3	際说完全管理保
Dust		<0.0035	<0.0038	0,0039	<0.0029	<0.0032	<0.0036	
	£/8 ² N	<0.0028	<0.0037	<0.0031	KD.0042	<0.0031	<0.0037	0.01447
100-00-00-00-00-00-00-00-00-00-00-00-00-		<0.0035	00.0038	<0.0039	<0.0035	<0.0041	Southern Street	
SC× 破黄酸化物	008	1.3	0.57	1.5	<0.40	<0.40	0.81	
		1.3	1.0	0.58	0.53	0.54	<0.40	10.00 %
		<0.42	<0.43	1.3	0.46	0.61		
とうした 塩化水素	308	1.9	1.6	1.8	0.48	0.69	1.6	
		1.1	0.35	2.0	1.9	0.60	0.22	10 CLTF
		3.1	\$0.23	1.3	0.70	1.6		
シンC× 窒素酸化物	ppa	13	18	18	8.0	11	<4.5	1
		16	10	23	9.6	6.7	17	SOULT
		35	14	9.5	14	25		
三元	ng/m ² N	0.0022	<0.0028	0.0045	0.0033	0.0032	0,0060	
		<0.0021	<0.0026	<0.0023	0.0033	0.0029	<0.0028	
		<0.0022	<0.0025	<0.0026	<0.0022	<0.0025		
F.e.	ng/m ³ H	0.020	0.080	0.034	<0.0020	0.036	0.032	
		0.077	0,010	0.10	0.28	0.0030	0.0055	
	1	<0.0024	0.0055	<0.0024	0.014	0,0091		
イーマンガン	10/x ² N	(0.0023	<0.0028	<0.0024	<0.0020	<0.0021	<0.0023	
		<0.0021	<0.0024	<0.0021	<0.0023	<0.0023	<0.0024	
		<0.0022	<0.0023	<0.0024	<0.0024	<0.0023	St. commence	
かドミウム		<0.0023	<0.0031	<0.0024	<0.0022	<0.0023	<0.0023	1
	100/m ³ N	<0.0023	<0.0024	<0.0011	<0.0023	<0.0023	<0.0024	
		<0.0022	<0.0023	<0.0024	<0.0022	<0.0025		
₽b ¶Q	ma/m ³ N	<0.012	<0.015	<0.013	<0.011	<0.011	<0.012	
		<0.011	<0.012	<0.011	<0.012	<0.013	<0.012	*****
	1200	<0.011	<0.012	<0.012	<0.011	<0.012		à
Cu 鋼		<0.0023	00.0031	<0.0024	0.0025	0.0025	<0.0025	2 mmer
	mg/m ¹ H	0.0026	<0.0028	<0.0021	0.0025	<0.0023	-00.0026	
	100.00	<0.0022	<0.0025	<0.0024	<0.0024	0.034		
H G.		0.00090	<0.00082	<0.00088	<0.00077	<0.00077	0.00078	-
川 身 水鍋	ng/a28	<0.00079	0.00084	0.0012	<0.00080	<0.00076	0.0014	
1.004		0.00096	0,00087	<0.00081	0.0033	<0.00078		

Lots of Data and References Available from Regulatory Agencies Internationally

Evaluation of Emissions from Thermal Conversion Technologies Processing Municipal Solid Waste and Biomass

Final Report

Prepared for:

BioEnergy Producers Association 3325 Wilshire Blvd, Ste. 708 Los Angeles, CA 90010

University of California, Riverside Riverside, California 92521

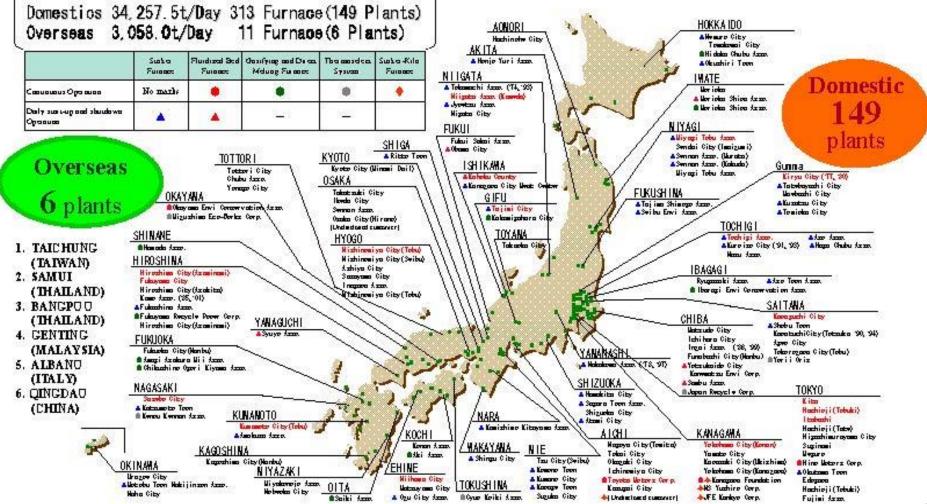
June 21, 2009

FACILITY EXAMPLES

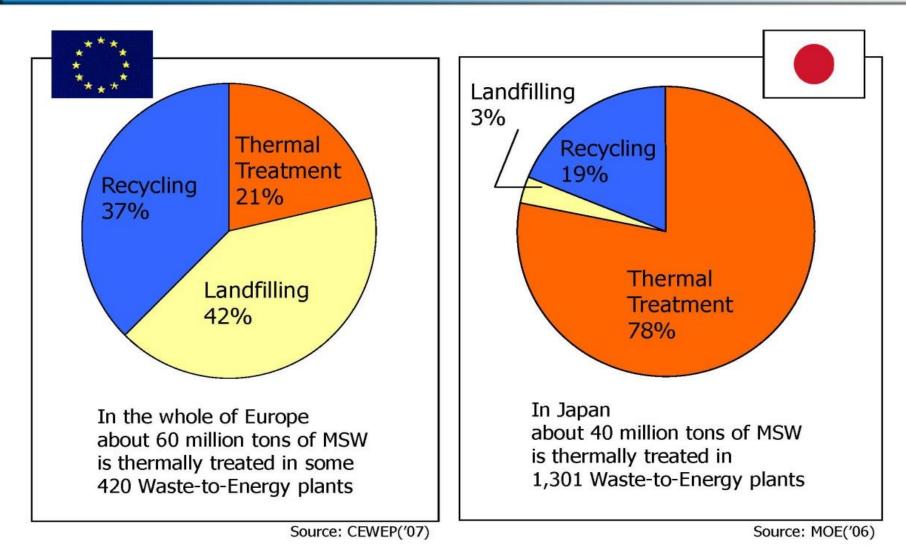
Waste-to-Energy in Europe in 2016

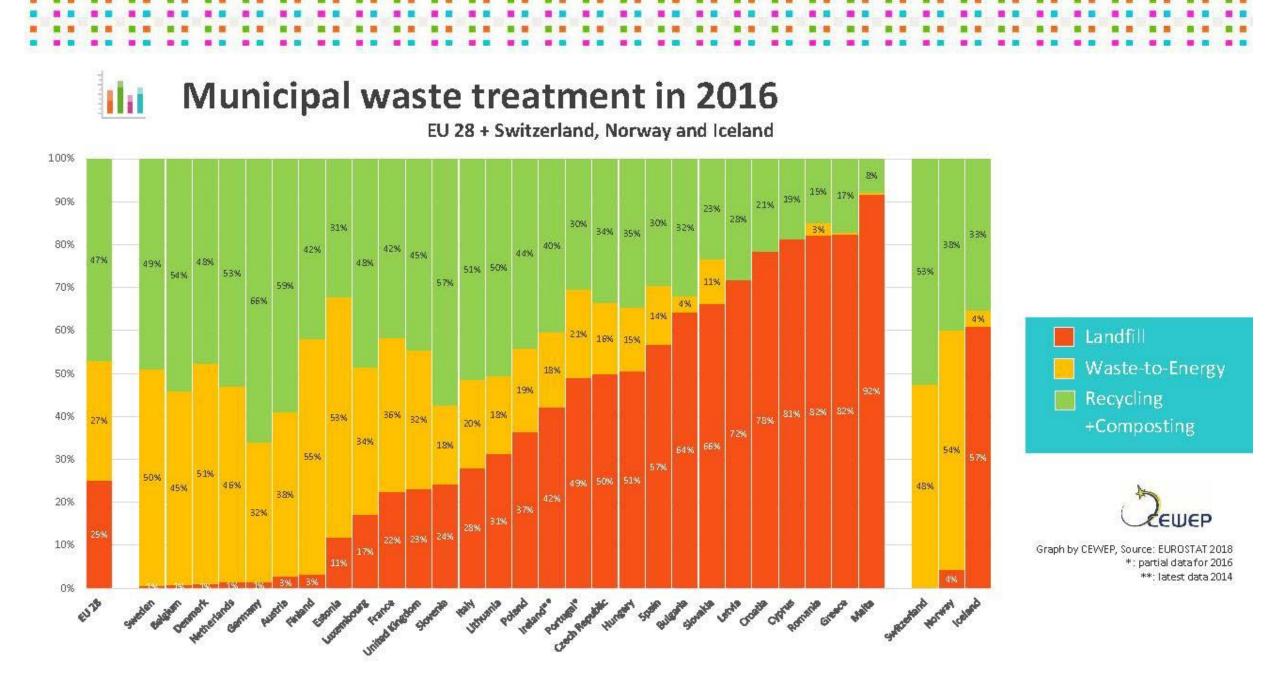
- WtE Plants operating in Europe (not including hazardous waste incineration plants)
- Waste thermally treated in WtE plants (in million tonnes)

Data supplied by CEWEP members and national sources


EUEP Confederation of European Waste-to-Energy Plants

* Includes plant in Andorra



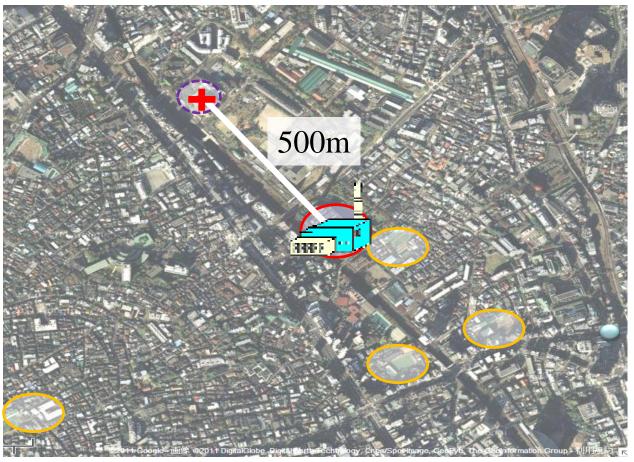

Delivery of Waste Incineration Plants (2010.07)

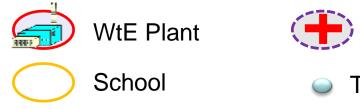
Waste Management Comparison

Newest EU Integrated Facility: EveRe Facility (France)

Newest EU Integrated Facility: EveRe Facility (France)

International Reference Benchmarks


- Strictest Environmental Standards
- Community Based Facilities
 - Determinative Social / Cultural Factors
- Comprehensive Systems Integration
- Eco Parks / Eco Towns
- "Recycling-Based Society"
 - Resource-poor and high density living
- Dominant Regulatory Driver: Public Health



Compatible Land Uses: Public Health is Primary Driver

Date Completed: March 1991 Capacity : 300ton/day x 2 lines Power Output : 11,000 kW

Train Station

Copyright 2011 © JFE Engineering Corporation All Rights Reserved

Facilities are Integral Part of Community

Bali Waste to Energy Facility, Taiwan (I.M. Pei)

Examples of Japanese Thermal Processing Facility

Molten Slag (JFE Gasifier, Japan)

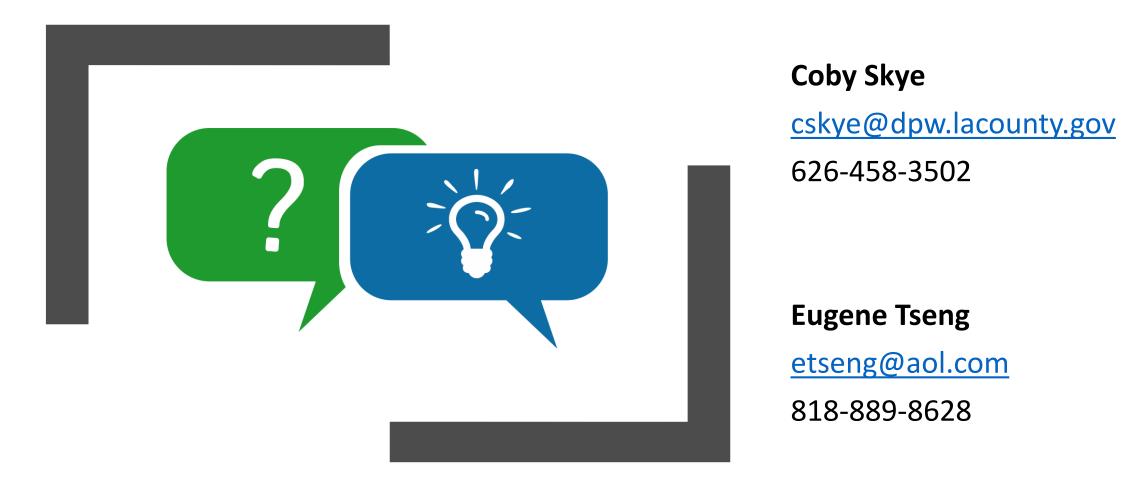
Products from Bottom Ash (Japan)

Community / Residential Programs (Cultural Factor)

KEY TAKEAWAYS

Key Takeaways

- Capacity
 - Existing waste processing capacity for City of Long Beach and other jurisdictions - better than landfilling
- Waste Streams
 - Outlet for materials that cannot feasibly be recycled due to China ban and contaminated organics
 - Anaerobic Digestion and Transformation/Thermal Conversion handle different waste streams
- Sustainability and Compliance
 - Reduce GHG emissions
 - Maximize diversion from landfills
 - Public health


Key Takeaways

- Financial Viability
 - Operate SERRF as long as financially viable
 - Transformation provides 10% diversion credit
 - No new transformation facilities likely to be built in California
 - Stabilization of long term costs and maintain control
- Further down the road Add CTs in phases
 - More Materials Recovery Facility to sort waste
 - Anaerobic Digestion for wet organic fraction
 - Gasification for dry organic fraction and inorganic waste
 - CTs are proven technologies safe emission levels
 - Cost and regulatory uncertainty are main barriers

Discussion and Questions

