

NOTICE of EXEMPTION from CEQA

CITY OF LONG BEACH | DEPARTMENT OF DEVELOPMENT SERVICES 333 W. OCEAN BLVD., 5TH FLOOR, LONG BEACH, CA 90802 (562) 570-6194 Fax: (562) 570-6068 | lbds.longbeach.gov

TO: Office of Planning & Research 1400 Tenth Street, Room 121 Sacramento, CA 95814	FROM:	Department of Development Services 333 W. Ocean Blvd, 5 th Floor Long Beach, CA 90802
L.A. County Clerk Environmental Fillings 12400 E. Imperial Hwy., Room 1201 Norwalk, CA 90650		
Project Title: CE- <u>18-216</u>		
Project Location/Address: NEC ATLANTIC ANE		
Project Activity/Description: Free-standing rest		•
restaurat www daily trough and pass of		•
ATM, and a free-standing ready-t	v- ear	restaurant (coffee) building
wen drive the of one over parts.		
Public Agency Approving Project: City of Long Beach		
Applicant Name: ATLANTIC & ARTESIA		
Mailing Address: 610 MEWEVET CENTER &		
Phone Number: <u>949, 303 - 0853</u> Applic	ant Signati	ure:
Below This Line fo	R STAFF USE O	INLY
Application Number: 806 - 25 Planner's	Initials: _A	0
Required Permits: SPR, COP, AND AU		
THE ABOVE PROJECT HAS BEEN FOUND TO E STATE GUIDELINES SECTION 15332	BE EXEMP	T FROM CEQA IN ACCORDANCE WITH
Statement of support for this finding: THIS PR	LOJECT	QUAUFIES AS AN OLBAN
INFILL DEVELOPMENT AS IT IS F	OR THE	CONSTRUCTION OF SIX
BUILDINGS TOTALING 10,330	SQ.FT.	00 A 93,045 SQ.FT.
LOT.		
Contact Person: ALEXIS CROPEZA Signature: ALEXIS CROPEZA	_ Contact I	Phone: <u>562-570-64/3</u> Pate: <u>9/26/18</u>
• //		

CALIFORNIA ENVIRONMENTAL QUALITY ACT STATEMENT OF SUPPORT

CLASS 32 (INFILL DEVELOPMENT) EXEMPTION DETERMINATION
6600 Atlantic Avenue
Application No. 1806-25
December 6, 2018

Section 15300 through 15333 of the California Environmental Quality Act (CEQA) establishes certain classes of projects as categorically exempt from the provisions of CEQA because they do not ordinarily result in a significant effect on the environment. The Project proposes to construct a 11,013 square-foot commercial shopping center consisting of six buildings including; a bank and two restaurants with drive-through lanes supported by 84 parking stalls on a 93,045 square-foot site located at 6600 Atlantic Avenue in the Community Automobile-Oriented District (CCA). The project includes a Tentative Parcel Map to reconfigure the site into four new parcels.

CEQA Section 15300.2 provides specific instance where exceptions to the established Classes of Exemptions included Class 32 -Infill Exemption are superseded; none of those conditions were found to apply to this project. The following analysis provides substantial evidence to support a conclusion that the proposed project qualifies for an exemption under CEQA Guidelines Section 15332 as a Class 32 urban infill development, and would not have a significant effect on the environment.

A. THE PROJECT IS CONSISTENT WITH THE APPLICABLE GENERAL PLAN DESIGNATION AND ALL APPLICABLE GENERAL PLAN POLICIES AS WELL AS WITH APPLICABLE ZONING DESIGNATION AND REGULATIONS.

The project site is zoned Community Automobile Oriented (CCA) District; a designation that permits retail and service uses. This Zoning designation is consistent with the General Plan Land Use Designation (LUD) of LUD #8A Traditional Retail Strip Commercial and LUD #8N Shopping Nodes. The project is designed to comply with all development standards and implements the General Plan objectives to provide adequate off-site parking, minimize the number of curb cuts, and designs commercial structures that are sensitive to nearby residential uses through its site configuration.

B. THE PROPOSED DEVELOPMENT OCCURS WITHIN CITY LIMITS ON A PROJECT SITE OF NO MORE THAN FIVE ACRES SUBSTANTIALLY SURROUNDED BY URBAN USES.

The project site is entirely within the city limits of Long beach, on a site that is 2.4 acres in size which is less than maximum five acres specified. The project site is bounded by Atlantic Avenue to the west, Lime Avenue to the east, Artesia Boulevard to the south, and the alley to the north. The project site was previously developed with commercial uses including a laundromat, drive through photo kiosk, and auto parts and repair shop but is now completely vacant of all structures. The surrounding streets separate the project site form a range of urban uses including both commercial and residential land uses.

C. THE PROJECT SITE HAS NO VALUE AS HABITAT FOR ENDANGERED, RARE OR THREATENED SPECIES

The project site is a formerly developed site that that has not value as, a habitat for endangered rare or threatened species.

D. APPROVAL OF THE PROJECT WOULD NOT RESULT IN ANY SIGNIFICANT EFFECTS RELATING TO TRAFFIC, NOISE, AIR QUALITY, OR WATER QUALITY.

The project will not result in any significant effects relating to traffic within the area or on the local streets as detailed in the Traffic Impact Analysis prepared by KOA and dated September 2018 and is incorporated by reference here.¹

The Project's emissions were calculated using CalEEmod V.2061.3.2 and is incorporated by reference here. Both emissions for construction and operation were found to be below the thresholds of significance for the six criteria pollutants established by the South Coast Air Quality Management District. Therefore, there are not significant effects relating to traffic are anticipated.

The ambient noise environment of the Project site consists primarily of traffic noise from the adjacent streets and the 91 Freeway located north of the project site. Short term noise levels associated with construction will comply with the City's Noise ordinance. Operational noise associated with the shopping center would be generated by vehicles, doors, car alarms, and peoples talking as is typical of commercial shopping centers. At the time of operation, the shopping center will not introduce a substantial new noise source relative to existing conditions and the project will operate within the standards of the adopted Noise Ordinance.

¹ Referenced documents are available for review at City Hall, Planning Bureau, 333 W. Ocean Blvd., 5th Floor, Long Beach, CA 90802.

Furthermore, the project has been condition to prohibit noise levels from the project to exceed the noise standards specified in the Long Beach Municipal Code.

The site is not identified as a contaminated or spill site, according to the Department of Toxic Substance Control's database EnviroStor. However, there are three sites located across the street from the project site at 6590 Atlantic Ave, 6629 Atlantic Ave, and 6601 Atlantic Avenue which were previously listed or Leaking Underground Storage Tank (LUST) and have been closed. Furthermore, a Phase II environmental site assessments were conducted for the project site and are incorporated by reference. The ESA's concluded that all Volatile Organic Compounds, Petroleum Hydorocarbons or Metals in Soils were less that the maximum threshold established by the Regional Water Quality Control Board or did not exceed local background levels and required no further action. Therefore, there is no potential for exposure due to contamination. The project includes a bioswale integrated into the perimeter landscaping to treat storm water run-off. Furthermore, the proposed project will comply with all requirement of the Long Beach Municipal Code Chapter 18.74 pertaining to low impact development standards and practices for stormwater pollution mitigation.

E. THE SITE CAN BE ADEQUATELY SERVED BY ALL REQUIRED UTILITIES AND PUBLIC SERVICES.

The project was previously developed and served by utilities and public services. The Project can adequately be served by utilities and public by reestablishing connections for water, sewer, electrically and natural gas, which would be undertaken as part of the building permitting process.

South Coast Air Quality Management District

21865 Copley Drive, Diamond Bar, CA 91765-4182 (909) 396-2000 • www.aqmd.gov

SCAQMD Air Quality Significance Thresholds

	Ma	ss Daily Thresholds	
Pollutant		Construction b	Operation ^c
NOx		100 lbs/day	55 lbs/day
VOC		75 lbs/day	55 lbs/day
PM10		150 lbs/day	150 lbs/day
PM2.5		55 lbs/day	55 lbs/day
SOx		150 lbs/day	150 lbs/day
СО		550 lbs/day	550 lbs/day
Lead		3 lbs/day	3 lbs/day
Toxic Air Cont	amina	253, 243, 443, 443, 443, 443, 443, 443, 44	nd GHG Thresholds
TACs (including carcinogens and non-carcin	ogens)	Cancer Burden > 0.5 e Chronic & Acute	emental Cancer Risk ≥ 10 in 1 million excess cancer cases (in areas ≥ 1 in 1 million) Hazard Index ≥ 1.0 (project increment)
Odor			or nuisance pursuant to SCAQMD Rule 402
GHG	V2000 1822 1		/yr CO2eq for industrial facilities
Ambient Air	· Quali	ty Standards for Cr	iteria Pollutants ^a
NO2 1-hour average annual arithmetic mean		contributes to an excee	inment; project is significant if it causes or edance of the following attainment standards: 0.18 ppm (state) (state) and 0.0534 ppm (federal)
PM10 24-hour average annual average			onstruction) ^e & 2.5 μg/m³ (operation) 1.0 μg/m³
PM2.5 24-hour average		10.4 μg/m³ (co	onstruction) ^e & 2.5 μg/m³ (operation)
SO2 1-hour average 24-hour average		0.25 ppm (state)	& 0.075 ppm (federal – 99 th percentile) 0.04 ppm (state)
Sulfate 24-hour average			25 μg/m³ (state)
CO 1-hour average 8-hour average		contributes to an exceed 20 ppn	inment; project is significant if it causes or edance of the following attainment standards: n (state) and 35 ppm (federal) 9.0 ppm (state/federal)
Lead 30-day Average Rolling 3-month average			1.5 μg/m³ (state) 0.15 μg/m³ (federal)

^a Source: SCAQMD CEQA Handbook (SCAQMD, 1993)

KEY: lbs/day = pounds per day ppm = parts per million $\mu g/m^3$ = microgram per cubic meter \geq = greater than or equal to MT/yr CO2eq = metric tons per year of CO2 equivalents > = greater than

Revision: March 2015

^b Construction thresholds apply to both the South Coast Air Basin and Coachella Valley (Salton Sea and Mojave Desert Air Basins).

^c For Coachella Valley, the mass daily thresholds for operation are the same as the construction thresholds.

^d Ambient air quality thresholds for criteria pollutants based on SCAQMD Rule 1303, Table A-2 unless otherwise stated.

^e Ambient air quality threshold based on SCAQMD Rule 403.

Page 1 of 24

Date: 9/5/2018 11:20 AM

CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

Uptown Commons

Los Angeles-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

Population	0
Floor Surface Area	11,000.00
Lot Acreage	2.14
Metric	1000sqft
Size	11.00
Land Uses	Strip Mall

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	6			Operational Year	2020
Utility Company	Southern California Edison	Ē			
CO2 Intensity (lb/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Override lot acreage to reflect actual development site size

Construction Phase -

Land Use Change -

Sequestration -

New Value	2.14	0.00
Default Value	0.25	0.00
Column Name	LotAcreage 0.25 2.14	NumberOfNewTrees
Table Name		tblSequestration

Date: 9/5/2018 11:20 AM

Uptown Commons - Los Angeles-South Coast County, Winter

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	ROG NOx CO SO2	8	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive Exhaust PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Bio- CO2 NBio- CO2 Total CO2	CH4	N2O	CO2e
Year					lb/day	lay							lb/day	lay		
2019	10.4690	10.4690 22.7851 15.4992 0.0260	15.4992	0.0260	6.6641	1.0920	7.7381	3.3971	1.0467	4.3851	0.0000	2,517.911	1.0467 4.3851 0.0000 2,517.911 2,517.911 0.7709 0.0000 2,537.183	0.7709	0.0000	2,537.183
2020	10.4443	10.4443 1.6875	1.8715	1.8715 3.0800e- 003	0.0112	0.1110	0.1222	0.1222 2.9600e- 0.1110 003	0.1110	0.1140	0.0000	292.5223	0.0000 292.5223 0.0221	0.0221	0.0000	293.0758
Maximum	10.4690	10.4690 22.7851 15.4992	15.4992	0.0260	6.6641	1.0920	7.7381	3.3971	1.0467	4.3851		2,517.911 2	0.0000 2,517.911 2,517.911 2 2	0.7709	0.0000 2,537.183	2,537.183 1

Mitigated Construction

FEBNS		ღ :	_∞ Ι	ღ 1
C02e		2,537.18	293.0758	2,537.18
N2O		0.0000		0.0000 2,537.183
CH4	ay	0.7709	0.0221	0.7709
Total CO2	lb/day	2,517.911	292.5223	2,517.911 2
Bio- CO2 NBio- CO2 Total CO2 CH4		0.0000 2,517.911 2,517.911 0.7709 0.0000 2,537.183	0.0000 292.5223 292.5223	0.0000 2,517.911 2,517.911 0.7709
Bio- CO2		0.0000	0.0000	0.0000
PM2.5 Total		4.3851	0.1140	4.3851
Exhaust PM2.5		1.0467	0.1110	1.0467
Fugitive PM2.5		3.3971	2.9600e- 003	3.3971
PM10 Total		7.7381	0.1222	7.7381
Exhaust PM10	lay	1.0920	0.1110	1.0920
SO2 Fugitive PM10	lb/day	6.6641	0.0112	6.6641
S02		0.0260	3.0800e- 003	0.0260
00		15.4992	1.8715	15.4992
ROG NOx CO		22.7851	1.6875	10.4690 22.7851 15.4992 0.0260
ROG		10.4690 22.7851 15.4992 0.0260 6.6641 1.0920 7.7381 3.3971	10.4443 1.6875 1.8715 3.0800e- 0.0112 003	10.4690
	Year	2019	2020	Maximum

CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

CO2e	0.00
N20	0.00
)2 CH4	0.00
Total CO2	0.00
Bio- CO2 NBio-CO2 Total CO2	0.00
Bio- CO2	0.00
PM2.5 Total	0.00
Exhaust PM2.5	0.00
Fugitive PM2.5	0.00
PM10 Total	0.00
ugitive Exhaust PM10 PM10	0.00
Fugitive PM10	0.00
S02	0.00
00	0.00
NOx	0.00
ROG	00'0
	Percent Reduction

Uptown Commons - Los Angeles-South Coast County, Winter

2.2 Overall Operational

Unmitigated Operational

	ROG	ROG NOx CO SO2	00	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBio- CO2	Bio- CO2 NBio- CO2 Total CO2 CH4	CH4	N2O	C02e
Category					lb/day	lay							lb/day	ay		
Area	0.2458	0.2458 1.0000e- 1.1300e- 0.0000 005 003	1.1300e- 003	0.0000		0.000.0	0.0000		0.000.0	0.000.0		2.4100e- 003	2.4100e- 2.4100e- 003 003	1.0000e- 005		2.5700e- 003
Energy	5.3000e- 004	5.3000e- 1 4.8500e- 1 4.0700e- 1 3.0000e- 0.04 0.03 0.03 0.05	4.0700e- 003	3.0000e- 005		3.7000e- 004	- 3.7000e- 004	r i	3.7000e- 004	3.7000e- 004		5.8147	5.8147	1.1000e 004	1000 400	5.8492
Mobile	0.7946	3.5356	8.5318	0.0252	1.9724	0.0271	1.9995	0.5279	0.0254	0.5533		2,566.562 7	2,566.562 2,566.562	0.1576		2,570.502
Total	1.0410	1.0410 3.5405	8.5370	0.0253	1.9724	0.0274	1.9999	0.5279	0.0257	0.5537		2,572.379 8	2,572.379 2,572.379 8 8	0.1577	1.1000e- 2,5	2,576.353 8

Mitigated Operational

C02e		2.5700e- 003	5.8492	2,570.502 0	2,576.353 8
N20			1.1000e- 004		1.1000e- 2,576.353 004 8
CH4	ay	1.0000e- 005	1.1000e- 004	0.1576	0.1577
Total CO2	lb/day	2.4100e- 003	5.8147	2,566.562 7	2,572.379 8
Bio- CO2 NBio- CO2 Total CO2		2.4100e- 2.4100e- 003 003	5.8147	2,566.562 2,566.562	2,572.379 2,572.379 8 8
Bio- CO2					
PM2.5 Total		0.0000	3.7000e- 004	0.5533	0.5537
Exhaust PM2.5		0.0000	3.7000e- 004	0.0254	0.0257
Fugitive PM2.5				0.5279	0.5279
PM10 Total		0.0000	- 3.7000e- 004	1.9995	1.9999
Exhaust PM10	lay	0.000.0	3.7000e- 004	0.0271	0.0274
Fugitive PM10	lb/day			1.9724	1.9724
S02		0.0000	3.0000e- 005	0.0252	0.0253
00		1.1300e- 003	4.0700e- 003	8.5318	8.5370
ROG NOx CO SO2		0.2458 1.0000e- 1.1300e- 0.0000	5.3000e- 14.8500e- 14.0700e- 13.0000e- 004 003 003 005	3.5356	3.5405
ROG		0.2458	5.3000e-	0.7946	1.0410
	Category	Area	Energy	Mobile	Total

Date: 9/5/2018 11:20 AM

Uptown Commons - Los Angeles-South Coast County, Winter

Page 5 of 24

C02e	0.00
N20	0.00
CH4	0.00
Total CO2	0.00
Bio- CO2 NBio-CO2 Total CO2	0.00
Bio- CO2	0.00
PM2.5 Total	0.00
Exhaust PM2.5	0.00
Fugitive PM2.5	0.00
PM10 Total	0.00
Exhaust PM10	0.00
Fugitive PM10	0.00
802	0.00
83	0.00
NOX	0.00
ROG	0.00
	Percent Reduction

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Num Days Week	Num Days	Phase Description
1	Site Preparation	reparation	1/30/2019	2/1/2019	5	3.	
2	Grading	Grading	2/2/2019	2/11/2019	5	9	
3	Building Construction	ling Construction	2/12/2019	12/16/2019	51	220	
4	Paving	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l 	12/30/2019	5	10	
5	Architectural Coating	Architectural Coating	12/31/2019	1/13/2020	5.	10	

Acres of Grading (Site Preparation Phase): 4.5

Acres of Grading (Grading Phase): 3

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 16,500; Non-Residential Outdoor: 5,500; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Uptown Commons - Los Angeles-South Coast County, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors		9.00	78	0.48
Paving	Cement and Mortar Mixers		8.00	6	0.56
Building Construction	Generator Sets		8.00	84	0.74
Building Construction	Cranes		8.00	231	0.29
Building Construction	Forklifts	2	7.00	68	0.20
Site Preparation	Graders	\	8.00	187	0.41
Paving	Pavers		8.00	130	0.42
Paving	Rollers	2	8.00	80	0.38
Grading	Rubber Tired Dozers		8.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes		00.9	26	0.37
Grading	Tractors/Loaders/Backhoes	2	7.00	26	0.37
Paving	Tractors/Loaders/Backhoes		8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes		7.00	26	0.37
Grading	Graders		8.00	187	0.41
Paving	Paving Equipment		8.00	132	0.36
Site Preparation	Scrapers		8.00	367	0.48
Building Construction	Welders	3	8.00	46	0.45

Trips and VMT

Phase Name	Phase Name Offroad Equipment Worker Trip Count	Worker Trip Number	Vendor Trip Number	/endor Trip Hauling Trip Number Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	3	8.00	00.0	0.00	14.70	9.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Grading	4	10.00	00.0	0.00	14.70	06.9	20.00 LD	20.00 LD_Mix	HDT_Mix	HHDT
Building Construction		4.00	2.00	00:0	14.70	06.9	20.00 LD	20.00 LD_Mix	HDT_Mix	THE
Paving	9	15.00	00.0	0.00	14.70	06.9	20.00 LD	20.00 LD_Mix	HDT_Mix	HHDT
Architectural Coating		1.00	0.00	0.00	14.70	6.90	20.00 LD_N	20.00 LD_Mix	HDT_Mix	HHDT

Uptown Commons - Los Angeles-South Coast County, Winter

3.1 Mitigation Measures Construction

3.2 Site Preparation - 2019

CO2e		0.0000	2,445.734 1	2,445.734
N20 C02e				
CH4	ay		0.7677	0.7677
Bio-CO2 NBio-CO2 Total CO2 CH4	lb/day	0.0000	2,426.540 ; 2,426.540 ; 8 ; 8	2,426.540 2,426.540 8 8
NBio- CO2			2,426.540 8	2,426.540 8
Bio-CO2		: : : : : :	-g -g -g -j	
PM10 Fugitive Exhaust PM2.5 Total PM2.5 PM2.5 Total		0.1718	0.7854	0.9572
Exhaust PM2.5		0.0000 1.5908 0.1718 0.0000 0.1718	0.7854	0.7854
Fugitive PM2.5		0.1718		0.1718
PM10 Total		1.5908	0.8537	2.4445
Fugitive Exhaust PM10	lb/day	:	0.8537	0.8537
Fugitive PM10	/ql	1.5908		1.5908
802			0.0245	0.0245
8			11.9143	11.9143
ROG NOx CO SO2			1.7557 21.5386 11.9143 0.0245	1.7557 21.5386 11.9143 0.0245
ROG			1.7557	1.7557
	Category	Fugitive Dust	Off-Road	Total

Uptown Commons - Los Angeles-South Coast County, Winter

3.2 Site Preparation - 2019
Unmitigated Construction Off-Site

CO2e		0.0000	0.0000	91.4491	91.4491
N20					
CH4	ay	0.000.0	0.000.0	5 3.1400e- 003	3.1400e- 003
Total CO2	lb/day	0.0000	0.0000	91.3705	91.3705
Bio- CO2 NBio- CO2 Total CO2		0.000.0		91.3705	91.3705
Bio- CO2					
PM2.5 Total		0.000.0	0000.0	0.0244	0.0244
Exhaust PM2.5		0.000.0	0.0000	7.1000e- (004	7.1000e- 004
Fugitive PM2.5		0.000.0	0.000.0	0.0237	0.0237
PM10 Total		0.000.0	0.0000	0.0902	0.0902
Exhaust PM10	lb/day	0.0000	0.0000	7.7000e- 004	7.7000e- 004
Fugitive PM10)/q	0.0000	0.0000	0.0894	0.0894
SO2		0.0000	0.0000	0.3540 9.2000e- 004	9.2000e- 004
8		0.0000	0.0000	0.3540	0.3540
ROG NOX CO SO2		0.0000 0.00000 0.00000 0.00000	0.0000 0.0000 0.0000	0.0325	0.0325
ROG		0.0000	0.000.0	0.0443	0.0443
	Category	Hauling	Vendor	Worker	Total

	ROG	ROG NOX CO SO2	8	SO2	Fugitive PM10	ugitive Exhaust PM10 PM10	PM10 Total	Fugitive PM2.5	Fugitive Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Bio- CO2 NBio- CO2 Total CO2 CH4		N20	C02e
Category					lb/day	lay							lb/day	ay		
Fugitive Dust				I	1.5908	0.0000	1.5908	0.1718	0.0000 1.5908 0.1718 0.0000	0.1718			0.0000			0.0000
Off-Road	1.7557	1.7557 21.5386 11.9143	11.9143	0.0245	 	0.8537	0.8537		0.7854	0.7854	0.0000	2,426.540 8	0.0000 2,426.540 2,426.540 0.7677 8 8	0.7677		2,445.734 1
Total	1.7557	1.7557 21.5386 11.9143 0.0245	11.9143	0.0245	1.5908	0.8537	2.4445	0.1718	0.7854	0.9572	0.0000	2,426.540 8	0.0000 2,426.540 2,426.540 8 8	0.7677		2,445.734

CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

Page 9 of 24

Date: 9/5/2018 11:20 AM

3.2 Site Preparation - 2019
Mitigated Construction Off-Site

\$20.5XX	- Section				
CO2e		0.0000	0.0000	91.4491	91.4491
NZO					
CH4	ay	0.000.0	0.0000	3.1400e- 003	3.1400e- 003
Total CO2	lb/day	0.000.0	0.0000	91.3705 3.1400e- 003	91.3705
Bio- CO2 NBio- CO2 Total CO2 CH4		0.000.0	0.0000	91.3705	91.3705
Bio- CO2					
PM2.5 Total		0.0000	0.0000	0.0244	0.0244
Exhaust PM2.5		0.000.0	0.0000	7.1000e- C	7.1000e- 0
Fugitive PM2.5		0.0000	0.0000	0.0237	0.0237
PM10 Total		0.0000 0.0000	0.0000	0.0902	0.0902
Exhaust PM10	day	0.0000	0.0000	4 7.7000e- 004	7.7000e- 004
Fugitive PM10	lb/day	0.000.0	0.000	0.089	0.0894
S02		0.0000	0.0000	9.2000e- 004	0.3540 9.2000e- 004
00		0.0000	0.0000	0.3540	0.3540
ROG NOx CO SO2		0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0443 0.0325 0.3540 9.2000e-	0.0325
ROG		0.0000	0.0000	0.0443	0.0443
	Category	Hauling	Vendor	Worker	Total

3.3 Grading - 2019

		ř	I _	40.000 CO.000
CO2e		0.0000	2,057.399	2,057.399
N20		_	 	
СН4	ay		0.6458	0.6458
Total CO2	lb/day	0.000.0	2,041.253 9	2,041.253 9
VBio- CO2			2,041.253 2,041.253 0.6458 9 9	2,041.253 2,041.253 0.6458 9 9
Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e				
PM2.5 Total		3.3675	0.9871	4.3546
Exhaust PM2.5		0.000.0	0.9871	0.9871
Fugitive PM2.5				3.3675
PM10 Total		6.5523	1.0730	7.6253 3.3675
Exhaust PM10	ау	0.0000 6.5523 3.3675	1.0730	1.0730
Fugitive PM10	lb/day	6.5523	; 	6.5523
802			0.0206	0.0206
တ			10.1518	10.1518
ROG NOx CO SO2 Fugitive Exhaust PM10 PM10 Total			22.7444	2.0287 22.7444 10.1518 0.0206
ROG			2.0287 22.7444 10.1518 0.0206	2.0287
	Category	Fugitive Dust	Off-Road	Total

Date: 9/5/2018 11:20 AM

Uptown Commons - Los Angeles-South Coast County, Winter

Page 10 of 24

3.3 Grading - 2019
Unmitigated Construction Off-Site

				***************************************	Name
CO2e		0.0000	0.0000	114.3113	114.3113
N20					
CH4	ay	0.000.0	0.0000	3.9300e- 003	3.9300e- 003
Total CO2	lb/day	0.0000 0.0000.0	0.0000	114.2131	
NBio- CO2		0.0000	0.0000	114.2131	114.2131 114.2131
Bio-CO2 NBio-CO2 Total CO2 CH4					
PM2.5 Total		0.0000	0.000.0	0.0305	0.0305
Exhaust PM2.5		0.0000	0.000.0	8.9000e- 004	8.9000e- 004
Fugitive PM2.5		0.000.0	0.000.0	0.0296	0.0296 8.9000e- 004
PM10 Total		0.0000	0.000.0	0.1127	0.1127
Exhaust PM10	lb/day	0.0000 0.0000 0.0000	0.0000	9.6000e- 004	9.6000e- 004
Fugitive PM10)/q		0.0000	0.1118	0.1118
802		0.000.0	0.0000	1.1500e- 003	1.1500e- 003
00		0.0000	0.0000	0.4425	0.4425
ROG NOX CO SO2		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	0.0554 0.0407	0.0554 0.0407 0.4425 1.1500e-
ROG		0.0000	0.0000	0.0554	0.0554
	Category	Hauling	Vendor	Worker	Total

100000000000000000000000000000000000000				
C02e		0.0000	2,057.399 7	2,057.399 7
N20				
CH4	ay		0.6458	0.6458
Total CO2	lb/day	0.0000	2,041.253 9	2,041.253 9
Bio- CO2 NBio- CO2 Total CO2 CH4			2,041.253 2,041.253 9	0.0000 2,041.253 2,041.253 9 9
			0.0000	0.0000
PM2.5 Total		3.3675	0.9871	4.3546
Exhaust PM2.5		3.3675 0.0000 3.3675	0.9871	0.9871
Fugitive Exhaust PM2.5 PM2.5		3.3675		3.3675
PM10 Total		6.5523	1.0730	7.6253
Exhaust PM10	lb/day	0.0000	1.0730	1.0730
SO2 Fugitive Exhaust PM10 PM10	lb/c	6.5523		6.5523
S02			0.0206	0.0206
တ			10.1518	10.1518
ROG NOx CO			2.0287 22.7444 10.1518 0.0206	2.0287 22.7444 10.1518 0.0206
ROG			2.0287	2.0287
	Category	Fugitive Dust	Off-Road	Total

Uptown Commons - Los Angeles-South Coast County, Winter

3.4 Building Construction - 2019
Unmitigated Construction Off-Site

CO2e		0.0000	54.3507	45.7245	100.0752
N20					
CH4	ay	0.0000	3.8100e- 003	1.5700e- 003	5.3800e- 003
Total CO2	lb/day	0.0000	54.2554	45.6852	99.9407
Bio- CO2 NBio- CO2 Total CO2		0.0000	54.2554	45.6852	99.9407
Bio- CO2					
PM2.5 Total		0.0000	5.1200e- 003	0.0122	0.0173
Exhaust PM2.5		0.000.0	1.4300e- 5 003	3.6000e- 004	1.7900e- 003
Fugitive PM2.5		0.0000 0.0000	3 3.6900e- 003	0.0119	0.0156
PM10 Total		0000	.0143	0.0451	0.0594
Exhaust PM10	lb/day	0.0000 0.0000	1.5000e- 0 003	3.9000e- 0 004	1.8900e- 003
Fugitive PM10	lb/c	0.0000	0.0128	0.0447	0.0575
S02		0.0000	5.1000e- 004	4.6000e- 004	9.7000e- 004
00		0.000.0	3 0.0677 5.1000e- 0.0128 0.004	0.1770	0.2447
ROG NOx CO SO2		0.0000 0.0000 0.0000	0.2318	0.0163	0.0308 0.2480 0.2447
ROG		0.0000	8.6700e- 0.2318 0	0.0222	0.0308
	Category	Hauling	Vendor	Worker	Total

	ROG	ROG NOx CO SO2	00	SO2	+	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	ugitive Exhaust PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 PM10 PM10 Total PM2.5 PM2.5 Total	Total CO2	CH4	N2O	C02e
Category					lb/c	b/day							lb/day	lay		
Off-Road	2.5581	2.5581 18.9103 15.2545 0.0250	15.2545	0.0250		1.0901 1.0901	1.0901		1.0449	1.0449	0.0000	1.0449 0.0000 2,312.145 2,312.145 0.4810	2,312.145 4	0.4810		2,324.170
Total	2.5581	2.5581 18.9103 15.2545	15.2545	0.0250		1.0901	1.0901		1.0449	1.0449		0.0000 2,312,145 2,312,145 0.4810	2,312.145 4	0.4810		2,324.170 5

Date: 9/5/2018 11:20 AM Page 13 of 24 CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

3.4 Building Construction - 2019
Mitigated Construction Off-Site

CO2e		0.0000	54.3507	45.7245	100.0752
N20					
CH4	ay	0.0000	3.8100e- 003	1.5700e- 003	5.3800e- 003
Total CO2	lb/day	0.000.0	54.2554	45.6852	99.9407
Bio- CO2 NBio- CO2 Total CO2		0.000.0	54.2554	45.6852	99.9407
Bio- CO2					
PM2.5 Total		0.0000	5.1200e- 003	0.0122	0.0173
Exhaust PM2.5		0.000.0	1.4300e- 003	3.6000e- 004	1.7900e- 003
Fugitive PM2.5		0.0000	3.6900e- 003	0.0119	0.0156
PM10 Total		0.000.0	0.0143	0.0451	0.0594
Exhaust PM10	lb/day	0.0000	1.5000e- 003	3.9000e- 0 004	1.8900e- 003
Fugitive PM10)/qi	0.0000	0.0128	0.0447	0.0575
S02		0.0000	5.1000e- 004	0 4.6000e- (9.7000e- 004
00		0.000.0	790.	0.177	0.2447
ROG NOX CO SO2		0.0000	0.2318	0.0163	0.2480 0.2447
ROG		0.0000 0.0000 0.0000 0.0000	8.6700e- 0.2318 0	0.0222	0.0308
	Category	Hauling	Vendor	Worker	Total

3.5 Paving - 2019

Fugitive Exhaust PM10 Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e PM10 Total PM2.5 Total	b/day b/day	0.7301 0.7301 0.6728 0.6728 0.6728 1.746.243 1.746.243 0.5418 1.759.787	0.0000 0.0000 0.0000 0.0000	0.7301 0.7301 0.6728 0.6728 1,746.243 1,746.243 0.5418 1,759.787 0.
**(1)488834				-
Fugitive E PM2.5)	
PM10 Total		0.7301	0.0000	0.7301
Exhaust PM10	day		•	0.7301
	/QI			
802		0.0178		0.0178
NOx CO S02		11.8507		11.8507
		1.2453 12.5685 11.8507 0.0178		1.2453 12.5685 11.8507
ROG		1.2453	0.0000	1.2453
	Category	Off-Road	Paving	Total

Date: 9/5/2018 11:20 AM Page 14 of 24 CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

3.5 Paving - 2019
Unmitigated Construction Off-Site

	ROG	ROG NOX CO SO2	03		Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	СН4	N2O	CO2e
Category					lb/day	ay							lb/day	ay		
Hauling	0.0000	00000 000000 000000 000000	0.0000	0.0000	0.000.0	0.0000 0.0000 0.0000.0		0.000.0	0.0000	0.000.0		0.0000	0.000.0	0.000.0		0.0000
Vendor	0.0000	0.0000 0.0000 0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000.0	0.000.0		0.0000	0.000.0	0.0000		0.0000
Worker	0.0831	0.0610	0.6637	1.7200e- 003	0.1677	1.4500e- 003	0.1691	0.0445	1.3300e- 003	0.0458		171.3196	171.3196 171.3196	5.8900e- 003		171.4670
Total	0.0831		0.0610 0.6637 1.7200e-	1.7200e- 003	0.1677	1.4500e- 0. 003	0.1691	0.0445	1.3300e- 003	0.0458		171.3196	171.3196 171.3196	5.8900e- 003		171.4670

	ROG	ROG NOX CO SO2	8	SO2	455.53	Exhaust PM10	PM10 Total	ugitive Exhaust PM10 Fugitive Exhaust PM10 PM2.5 PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	PM2.5 Bio-CO2 NBio-CO2 Total CO2 Total	Total CO2	CH4	N20	CO2e
Category					lb/day	lay							lb/day	ау		
Off-Road	1.2453 12.5685 11.8507 0.0178	12.5685	11.8507	0.0178		0.7301 0.7301	0.7301		0.6728	0.6728	0.0000	0.0000 1,746.243 1,746.243 0.5418	1,746.243	0.5418		1,759.787 0
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.2453	1,2453 12,5685 11,8507 0,0178	11.8507	0.0178		0.7301	0.7301		0.6728	0.6728	0.0000	0.0000 1,746.243 1,746.243 2 2	1,746.243	0.5418		1,759.787 0

Date: 9/5/2018 11:20 AM Page 15 of 24 CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

3.5 Paving - 2019
Mitigated Construction Off-Site

CO2e		0.0000	0.0000	171.4670	171.4670
N2O					
CH4	lay	0.0000	0.0000	5.8900e- 003	5.8900e- 003
Total CO2	lb/day	0.0000 0.0000	0.0000	171.3196 171.3196	171.3196 171.3196
Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	171.3196	171.3196
Bio- CO2					
PM2.5 Total		0.0000	0.0000	0.0458	0.0458
Exhaust PM2.5		0.000 0.0000	0.0000	1.3300e- 1 003	1.3300e- 003
Fugitive PM2.5		0.000.0	0.0000	0.0445	0.0445
PM10 Total		0.000.0	0.000.0	0.1691	0.1691
Exhaust PM10	lay	0.0000	0.0000	1.4500e- 0.	1.4500e- 003
Fugitive PM10	lb/day	0.0000	0.000	.1677	0.1677
		0.0000	0.0000	1.7200e- 0 003	1.7200e- 0 003
8		0.0000	0.0000	0.6637	0.0610 0.6637
ROG NOX CO SO2		0.0000 0.0000 0.0000 0.0000	0.0000	0.0610	0.0610
ROG		0.0000	0.000.0	0.0831	0.0831
	Category	Hauling	Vendor	Worker	Total

3.6 Architectural Coating - 2019

02e		0.000.0	282.0423	282.0423
0		0.0	282	282
NZ			ω,	<u>ω</u>
CH4	lb/day		0.0238	0.023
Total CO2	P)	0.0000	281.4481	281.4481
Bio-CO2 NBio-CO2 Total CO2 CH4 N2O CO2e			281.4481 281.4481	281.4481 281.4481 0.0238
Bio-CO2				
PM2.5 Total		0.0000	0.1288	0.1288
Fugitive Exhaust PM2.5 PM2.5		0.0000	0.1288	0.1288
Fugitive PM2.5				
PM10 Total		0.0000	0.1288	0.1288
Exhaust PM10	lb/day	0.0000	0.1288	0.1288
Fugitive PM10	/ql			
S02			2.9700e- 003	2.9700e- 003
00			1.8354 1.8413 2.9700e-	10.4634 1.8354 1.8413 2.9700e-
ROG NOx CO			1.8354	1.8354
ROG		10.1970	0.2664	10.4634
	Category	Archit. Coating 10.1970	Off-Road	Total

Page 16 of 24 CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

Date: 9/5/2018 11:20 AM

3.6 Architectural Coating - 2019
Unmitigated Construction Off-Site

C02e		0.0000	0.0000	11.4311	11.4311
N20					
СН4	ib/day	0.0000	0.0000	3 3.9000e- 004	3.9000e- 004
Total CO2	JP/c	0.0000 0.0000	0.0000	11.4213	11.4213
Bio- CO2 NBio- CO2 Total CO2 CH4		0.0000	0.0000	11.4213	11.4213
Bio-CO2					
PM2.5 Total		0.0000	0.0000	3.0500e- 003	3.0500e- 003
Exhaust PM2.5		0.0000 0.0000	0.0000	0000e- 005	9.0000e- 005
Fugitive PM2.5		0.0000	0.0000	2.9600e- 9.0 003	2.9600e- 003
PM10 Total		0.0000	0.0000	0.0113	0.0113
ugitive Exhaust PM10 PM10	lb/day	0.0000	0.0000	1.0000e- 004	1.0000e- 004
Fugitive PM10)/ql	0.0000	0.0000	0.0112	0.0112
S02		0.000.0	0.0000	0.0443 1.1000e- 004	1.1000e- 004
00		0.0000	0.0000	0.0443	0.0443 1.1000e-
ROG NOx CO SO2		0.0000 1 0.0000 1 0.0000 1 0.0000	0.0000	4.0700e- 003	5.5400e- 4.0700e- 003 003
ROG		0.0000	0.0000	5.5400e- 003	5.5400e- 003
	Category	Hauling	Vendor	Worker	Total

	ROG		00	NOx CO SO2 F	Fugitive PM10	ugitive Exhaust PM10 PM10	PM10 Total	Fugitive Exhaust PM2.5 PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio- CO2 Total CO2	Total CO2	CH4	N20	C02e
Category					γqi	lb/day							lb/day	ay		
D)	10.1970					0.000.0	0.0000		0.0000	0.0000	, , , , , , , , , , , , , , , , , , ,		0.0000			0.000.0
Off-Road	0.2664	1.8354	1.8413	0.2664 1.8354 1.8413 2.9700e- 003		0.1288	0.1288		0.1288	0.1288	0.0000	0.0000 281.4481 281.4481 0.0238	281.4481	0.0238		282.0423
Total	10.4634	10.4634 1.8354	1.8413 2.9700e- 003	2.9700e- 003		0.1288	0.1288		0.1288	0.1288	0.0000	0.0000 281.4481 281.4481	281.4481	0.0238		282.0423

Date: 9/5/2018 11:20 AM Page 17 of 24 CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

3.6 Architectural Coating - 2019 Mitigated Construction Off-Site

وسبحب		ware and			
CO2e		0.0000	0.0000	11.4311	11.4311
N20					-
CH4	ay	0.0000	0.0000	3.9000e- 004	3.9000e- 004
Total CO2	lb/day		0.0000	11.4213	11.4213
Bio- CO2 NBio- CO2 Total CO2		0000.0	0.000.0	11.4213	11.4213
Bio-CO2					
PM2.5 Total		0.0000	0.0000	3.0500e- 003	3.0500e- 003
Exhaust PM2.5		0.000.0	0.000.0	9.0000e- 005	9.0000e- 005
Fugitive PM2.5		0.0000	0.0000	2.9600e- 9.0000e- 003 005	2.9600e- 003
PM10 Total		0.000	0.0000	.0113	0.0113
Exhaust PM10	lay	0.0000	0.0000	1.0000e- 0 004	1.0000e- 004
igitive PM10	lb/day	0.0000	0.0000	0.0112	0112
SO2		0.0000	0.0000	1.1000e- 004	1.1000e- 004
03		0.0000	0.0000	0.0443	0.0443
ROG NOX CO SO2 F.		00000 00000 000000 000000	0.0000 0.0000	5.5400e- 14.0700e- 1003 003	5.5400e- 4.0700e- 0.0443 003 003
ROG		0.0000	0.0000	5.5400e- 003	5.5400e- 003
	Category	Hauling	Vendor	Worker	Total

3.6 Architectural Coating - 2020

281.9928 281.9928 0.0000 COZe N20 281.4481 281.4481 0.0218 0.0218 CH4 lb/day Bio- CO2 NBio- CO2 Total CO2 281.4481 281.4481 0.0000 PM2.5 Total 0.1109 0.1109 0.0000 0.1109 Exhaust PM2.5 0.1109 0.0000 Fugitive PM2.5 0.1109 0.1109 PM10 Total 0.0000 Exhaust PM10 0.1109 0.000.0 0.1109 lb/day Fugitive PM10 2.9700e-003 1.8314 2.9700e-003 802 1.8314 ္ပ 1.6838 0.2422 1.6838 Š 10.4392 10.1970 ROG Archit. Coating Off-Road Category Total

Date: 9/5/2018 11:20 AM

Uptown Commons - Los Angeles-South Coast County, Winter

Page 18 of 24

3.6 Architectural Coating - 2020 Unmitigated Construction Off-Site

-			ininia sensainia		
C02e		0.0000	0.0000	11.0829	11.0829
N20					
	ay.	0.0000	0.000.0	3.5000e- 004	3.5000e- 004
Total CO2	lb/day	0.0000 0.00000 0.00000	0.0000	11.0742	11.0742 11.0742 3.5000e-
NBio-CO2		0.000.0	0.0000	11.0742	11.0742
Bio-CO2 NBio-CO2 Total CO2 CH4					
PM2.5 Bi		0000.0	0.000.0	3.0500e- 003	3.0500e- 003
Exhaust PM2.5		0.000.0	0.0000	9.0000e- 005	9.0000e- 005
PM10 Fugitive Exhaust Total PM2.5 PM2.5		0.0000	0.0000	2.9600e- 003	0.0113 2.9600e- 003
PM10 Total		0.000.0	0.0000	0.0113	0.0113
Exhaust PM10	lay	0.000.0	0.0000	9.0000e- 005	0.0112 9.0000e- 005
Fugitive PM10	lb/day	0.000.0	0.0000	0.0112	0.0112
S02		0.000.0	0.0000	1.1000e- 004	0.0401 1.1000e-
00		0.0000	0.0000	0.0401	0.0401
ROG NOx CO SO2 Fugitive PM10		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	3.6200e- 003	5.1100e- 3.6200e- 003 003
ROG		0.0000	0.0000	5.1100e- 3.6200e- 0.0401 003 003	5.1100e- 003
	Category	Hauling	Vendor	Worker	Total

		,		<u> </u>
CO2e		0.0000	281.9928	281.9928
N2O				
CH4	ay		0.0218	0.0218
Total CO2	lb/day	0.0000	281.4481	281.4481
Bio- CO2 NBio- CO2 Total CO2			281.4481 281.4481	0.0000 281.4481 281.4481
Bio- CO2			0.0000	0000'0
PM2.5 Total		0.0000	0.1109	0.1109
Exhaust PM2.5		0.0000	0.1109	0.1109
Fugitive PM2.5				
PM10 Total		l	0.1109	0.1109
Exhaust PM10	lb/day	0.0000	0.1109	0.1109
Fugitive PM10	/q _l			
2OS			2.9700e- 003	2.9700e- 003
00			1.8314	1.8314
ROG NOx CO SO2			1.6838	10.4392 1.6838 1.8314 2.9700e-
ROG		10.1970	0.2422 1.6838 1.8314 2.9700e- 003	10.4392
	Category	Archit. Coating 10.1970	Off-Road	Total

Date: 9/5/2018 11:20 AM Page 19 of 24 CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

3.6 Architectural Coating - 2020

Mitigated Construction Off-Site

CO2e		0.0000	0.0000	11.0829	11.0829
N2O					
CH4	ay	0.0000	0.0000	3.5000e- 004	3.5000e- 004
Total CO2	lb/day	0.0000	0.000	11.0742 3.5000e- 004	11.0742
Bio- CO2 NBio- CO2 Total CO2		0.0000	0.0000	11.0742	11.0742
Bio- CO2					
PM2.5 I		0.0000	0.0000	3.0500e- 003	3.0500e- 003
Exhaust PM2.5		0.0000	0.0000	9.0000e- 3. 005	9.0000e- 005
PM10 Fugitive Total PM2.5		0.0000 0.0000 0.0000	0.0000	2.9600e- 9.0 003	2.9600e- 003
PM10 Total		0.0000	0.0000	0.0113	0.0113
Exhaust PM10	lay	0.0000 0.0000	0.0000	2 9.0000e- 005	9.0000e- 005
Fugitive PM10	lb/day		0.0000	0.0112	0.0112
SO2 Fugitive PM10		0.0000	0.0000	1.1000e- 004	1.1000e- 004
8		0.0000	0.0000	0.0401	0.0401
NOx CO		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	3.6200e- 003	5.1100e- 3.6200e- 0.0401 1.1000e- 0.03
ROG		0.0000	0.0000	5.1100e- 3.6200e- 0.0401 1.1000e- 003 003 004	5.1100e- 003
	Category	Hauling	Vendor	Worker	Total

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2016.3.2

Page 20 of 24

Date: 9/5/2018 11:20 AM

Uptown Commons - Los Angeles-South Coast County, Winter

CO2e		2,570.502 0	2,570.502 0
NZO			
	ıy	0.1576	0.1576
Total CO2	lb/day	2,566.562	2,566.562
NBio- CO2		2,566.562 2,566.562 0.1576	2,566.562 2,566.562 0.1576 7
Fugitive Exhaust PM2.5 Bio-CO2 NBio-CO2 Total CO2 CH4 PM2.5 PM2.5 Total			
PM2.5 Total		0.5533	0.5533
Exhaust PM2.5		.9724 0.0271 1.9995 0.5279 0.0264 0.5533	0.0254
Fugitive PM2.5		0.5279	0.5279
PM10 Total		1.9995	1.9995
ugitive Exhaust PM10 PM10 Total	b/day	0.0271	9724 0.0271 1.9995 0.5279 0.0254
Fugitive PM10	p/qı	·	·
S02		0.0252	0.0252
00		8.5318	8.5318
ROG NOX CO SO2		0.7946 3.5356 8.5318 0.0252	0.7946 3.5356 8.5318 0.0252
ROG		0.7946	0.7946
	Category	Mitigated	Unmitigated

4.2 Trip Summary Information

Inmitigated	Annual VMT	849,310	849,310 849,310
	Sunday	224.73	224.73
verage Daily Trip Rate	Saturday	462.44	462.44
Avera	Weekday	487.52	487.52
	Land Use	Strip Mall	Total

4.3 Trip Type Information

%	Pass-by	15
Trip Purpose %	Diverted	40
	Primary	45
	3 or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	19.00
Trip %	H-S or C-C	64.40
	H-W or C-W	16.60
	H-O or C-NW	6.90
Miles	H-S or C-C	8.40
	H-W or C-W	16.60
	Land Use	Strip Mall

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV LHD1	LHD1	LHDZ MHD HHD OBUS UBUS MCY SBUS	MHD	ННО	OBUS	SNBO	MCY	SBUS	MH
Strip Mall	0.547726	0.045437	0.201480	0.122768	0.016614	1480, 0.122768, 0.016614, 0.006090, 0.019326, 0.029174, 0.002438, 0.002359, 0.005005, 0.000677, 0.000907	0.019326	0.029174	0.002438	0.002359	0.005005	0.000677	0.000907
		-	1		-		_						

5.0 Energy Detail

Historical Energy Use: N

CalEEMod Version: CalEEMod.2016.3.2

Page 21 of 24

Date: 9/5/2018 11:20 AM

Uptown Commons - Los Angeles-South Coast County, Winter

5.1 Mitigation Measures Energy

CO2e			5.8492
N20		5.8147 1.1000e- 1.1000e- 004 004	1.1000e- 1.1000e- 004 004
Bio- CO2 NBio- CO2 Total CO2 CH4	lb/day	1.1000e- 004	1.1000e- 004
Total CO2	lb/c	5.8147	5.8147
NBio- CO2		5.8147	5.8147
Bio-CO2		3 ~43 ~44 ~41 ·41	
PM2.5 Total		3.7000e- 004	3.7000e- 3.7000e- 004 004
Exhaust PM2.5		3.7000e- 3.7000e- 004 004	3.7000e- 004
Fugitive PM2.5			! ! ! !
PM10 Total		3.7000e- 004	3.7000e- 004
Exhaust PM10	lb/day	3.7000e- 3.7000e- 004 004	3.7000e- 3 004
Fugitive PM10	/ql		
802		3.0000e- 005	3.0000e- 005
පි		4.0700e- 003	4.0700e- 003
ROG NOx CO		5.3000e- 4.8500e- 4.0700e- 3.0000e- 004 003 003 005	4.8500e- 003
ROG		5.3000e- 004	5,3000e- 4,8500e- 4,0700e- 3,0000e- 004 003 003 005
	Category	NaturalGas Mitigated	NaturalGas Unmitigated

5.2 Energy by Land Use - NaturalGas

Unmitigated

Contraction of the Contraction o	A Constitution of the Cons	HOLD STREET, S						077.40	7	Part of day	DA42 G	دري داع	Dis CO2 NBio. CO2 Total CO2	Total CO2	CHZ	N2O	COSe
	NaturalGa s Use	ROG	× O Z	8	NaturalGa ROG NOx CO SO2 s Use	PM10	Exhaust PM10	Total	PM2.5	PM2.5	Total	900-002	200 - Old M		5		
Land Use	kBTU/yr					lb/day	lay							/qı	lb/day		
Strip Mall	49.4247	5.3000e- 004	4.8500e- 003	49,4247 5,3000e- 4,8500e- 4,0700e- 3,0000e-	3.0000e- 005		3.7000e- 3.7000e- 004 004	3.7000e- 004		3.7000e- 004	3.7000e- 004		5.8147	5.8147	5.8147 1.1000e- 1.1000e- 004 004	1.1000e- 004	5.8492
Total		5.3000e- 004	4.8500e- 003	5.3000e- 4.8500e- 4.0700e- 3.0000e- 004 003 005	3.0000e- 005	- Anna Address	3.7000e- 004	3.7000e- 004		3.7000e- 004	3.7000e- 004		5.8147	5.8147	1,1000e- 004	1.1000e- 004	5.8492

Uptown Commons - Los Angeles-South Coast County, Winter

Date: 9/5/2018 11:20 AM

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	vaturalGa ROG NOx CO SO2 s Use	×ON	8	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive Exhaust PM2.5	Exhaust PM2.5	PM2.5 Total	PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total	NBio- CO2	Total CO2	CH4	N20 C02e	C02e
Land Use	kBTU/yr					lb/day	lay							/ql	lb/day		
Strip Mall	0.0494247	0.04942471 5.3000e- 14.8500e- 14.0700e- 13.0000e-	4.8500e- 003	4.0700e- 003	3.0000e- 005		3.7000e- 004	3.7000e- 3.7000e- 004 004		3.7000e- 3.7000e- 004 004	3.7000e- 004	1 에뷔 에뷔 이루	5.8147	5.8147	1.1000e- 004	5.8147 1.1000e- 1.1000e- 004 004	5.8492
Total		5.3000e- 004	4.8500e- 003	5.3000e- 4.8500e- 4.0700e- 3.0000e- 004 003 003 005	3.0000e- 005		3.7000e- 3 004	3.7000e- 004		3.7000e- 3. 004	3.7000e- 004		5.8147	5.8147		1.1000e- 1.1000e- 004 004	5.8492

6.0 Area Detail

6.1 Mitigation Measures Area

C02e		2.5700e- 003	2.5700e- 003
1 N2O			Эе-
Ğ	lb/day	1.0000	1.0000
Total CO2	q.	2.4100e- 003	2.4100e- 003
PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 Total		2.4100e- 2.4100e- 1.0000e- 003 003 005	2.4100e- 2.4100e- 1.0000e- 003 003 005
Bio- C		2 11 12 13 1	
PM2.5 Total		0.0000	0.0000
Exhaust PM2.5		0.0000	0.0000
Fugitive Exhaust PM2.5			
PM10 Total		0.0000	0.0000
Exhaust PM10	lb/day	0.0000	0.000.0
Fugitive PM10)P/k		
SO2		0.000.0	0.0000
00		1.1300e- 003	1.1300e- 003
ROG NOx CO SO2 Fugitive Exhaust PM10 PM10		0.2458 1.0000e- 1.1300e- 0.0000 005 003	0.2458 1.0000e- 1.1300e- 0.0000 005 003
ROG		0.2458	0.2458
	Category	Mitigated	Unmitigated

Date: 9/5/2018 11:20 AM Page 23 of 24 CalEEMod Version: CalEEMod.2016.3.2

Uptown Commons - Los Angeles-South Coast County, Winter

6.2 Area by SubCategory

Unmitigated

	an experience				
CO2e		0.0000	0.0000	2.5700e- 003	2.5700e- 003
N20] 		
CH4	ay			1.0000e- 005	1.0000e- 005
Total CO2	lb/day	0.0000	0.0000	2.4100e- 003	2.4100e- 003
Bio- CO2 NBio- CO2 Total CO2				2.4100e- 003	2.4100e- 2. 003
Bio-CO2			1		
PM2.5 Total		0.0000	0.0000	0.0000	0.0000
Exhaust PM2.5		0.0000	0.0000	0.0000	0.0000
Fugitive PM2.5					
PM10 Total		0.000.0	0.0000	0.0000	0.0000
Exhaust PM10	lb/day	0.0000	0.0000	0.0000	0.000.0
Fugitive PM10	lb/c				
S02				0.0000	0.0000
8				1.1300e- 003	1.1300e- 003
ROG NOx CO SO2				1.1000e- 1.0000e- 1.1300e- 004 005 003	1.0000e- 1.1300e- 0.0000 005 003
ROG		0.0279	0.2178	1.1000e- 004	0.2459
	SubCategory	Architectural Coating	Consumer	Landscaping	Total

Mitigated

C02e		0.0000	0.0000	2.5700e- 003	2.5700e- 003
N20		1			
CH4	33		 	1.0000e- 005	1.0000e- 005
Total CO2	lb/day	0.0000	0.000.0)e- 2.4100e- 1	2.4100e- 1.0 003
Bio- CO2 NBio- CO2 Total CO2				2.4100e- 003	2.4100e- 003
Bio- CO2					
PM2.5 Total		0.0000	0.0000	0.0000	0.0000
Exhaust PM2.5		0.000.0	0.0000	0.000.0	0.0000
Fugitive PM2.5					
PM10 Total		0.0000	0.0000	0.0000	0.0000
Exhaust PM10	lay	0.000.0	0.0000	0.000.0	0.0000
Fugitive PM10	lb/day				
\$05				0.0000	0.0000
00			r	1.1300e- 003	1.1300e- 003
ROG NOx				1.1000e- 1.0000e- 1.1300e- 004 005 003	0.2459 1.0000e- 1.1300e- 005 003
ROG		0.0279	0.2178	1.1000e- 004	0.2459
	SubCategory	Architectural Coating	Consumer Products	Landscaping	Total

7.0 Water Detail

CalEEMod Version: CalEEMod.2016.3.2

Page 24 of 24

Date: 9/5/2018 11:20 AM Uptown Commons - Los Angeles-South Coast County, Winter

Water
Measures
5
.≃
ᆂ
<u>0</u>
.0
===
+
≥
$\overline{}$

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Г	12.75
l	
	ğ.
ľ	-
	Ž
ŀ	
l	5
	acto
l	<u> </u>
l	ا د
L	110
l	
	.₩e
l	g
l	SZ
I	Ĭ
l	
ŀ	
I	
l	<u>-</u>
	χea
l	/s/
No. of Contrast of	ద్ది
l	
ľ	
ı	ay
200	Z/C
l	ᅙ
	†
Ì	
	V. S. S.
	i i
	€l
	ž
1	(1 ± 6)4
	e l
	7
	Jue 1
	ipi
	100
ļ	

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type

	quipment Type Heat Input/Day Heat Input/Year Boiler Rating Fuel Type
Boilers	Equipment Type

Fuel Type

Load Factor

Horse Power

Hours/Year

Hours/Day

Number

User Defined Equipment

a١	
~	
1000	
=	
ᆮ	
Ĕ	
ent	
ent	
nent	
ment	
ment	
pment	
ipment	
lipment	
uipment	
quipment	
quipment	
quipment	
Equipment	
Equipment Type Equipment	

11.0 Vegetation