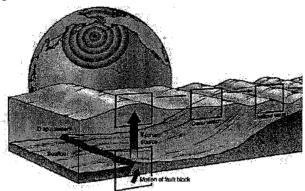


Tsunami Emergency Preparedness

Long Beach Fire Department March 8, 2005


Tsunami Report

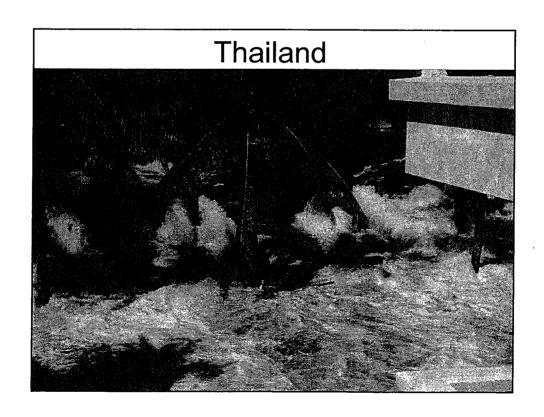
- ✓ Description of tsunamis
- ✓ Port Impact
- ✓ Detection and Notification Processes
- ✓ Evacuation Procedures
- ✓ Public Education
- ✓ City's Emergency Response Plan

Tsunamis – Description

- ✓ Series of extremely long traveling ocean waves
- ✓ Speeds can exceed 500 miles per hour in deep water
- ✓ Travel slower in shallow coastal areas where wave heights increase

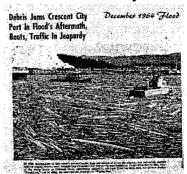
3

Indian Ocean Tsunami 12/26/04



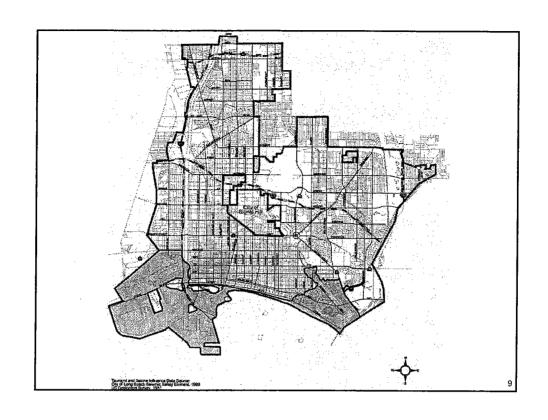
Tsunamis – Description

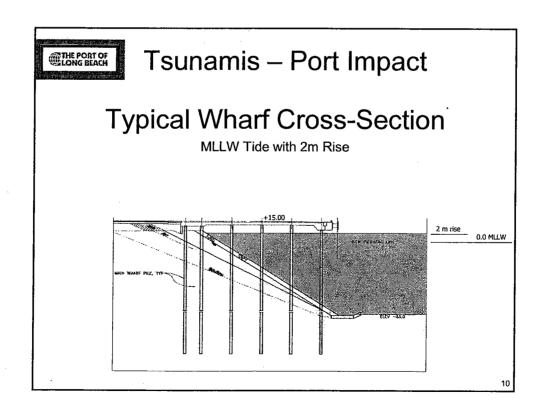
- ✓ First wave is not necessarily the largest nor most significant
- ✓ First sign of tsunami may actually be the withdrawal of water away from the shore
- ✓ Water level on shore can rise significantly
- ✓ Risks include:
 - Drowning
 - Flooding
 - Contamination of drinking water
 - Fires from ruptured tanks or gas lines
 - Loss of vital infrastructure



Tsunamis – Historical Record

- ✓ Based on historic record, the probability of a devastating tsunami is relatively low
- √ 14 tsunamis with waves higher than three feet have impacted the California coast in the last 200 years
 - Six of the 14 caused considerable damage
 - Worst one damaged
 Crescent City
 and was caused by the
 1964 Alaskan Earthquake

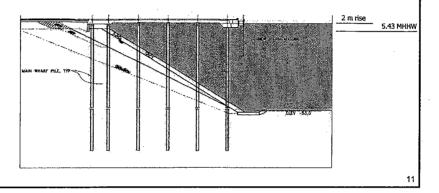




Tsunamis – Possible Impact

- ✓ Potential impact areas are less than 25 feet above sea level and within one mile of the shoreline
- ✓ Major tsunami in Long Beach area would be rare
- ✓ The Hazard Mitigation Plan identifies these areas as being subject to the most impact:
 - Port and commercial facilities at or near sea level
 - Downtown Marina
 - Naples, the Peninsula, and Belmont Shore areas
 - Coastal bridges and exposed infrastructure

В



Tsunamis – Port Impact

Typical Wharf Cross-Section

Mean High Water Tide with 2m Rise

Tsunamis – Port Impact

Facility Design Tools

- ✓ Long Beach/LA Harbors Model Facility
 - The US Army Engineer Research and Development Center constructed a physical model of the Long Beach-Los Angeles (LB/LA) Harbors complex.
 - The harbors have a history of surge due to long-period waves.
 - Model ensures optimization of facilities to minimize ship motions in the new basins, as well as preventing adverse effects in existing harbors areas.

Tsunamis - Port Impact

Facility Design Case Study

✓ Modeling and Design

- Prototype wave data have been collected within Long Beach/Los Angeles (LB/LA) Harbors since 1984
- Harbor resonance studies were conducted in the LB/LA physical model to predict the distribution of wave energy
- Wave data are used to document the magnitude of waves occurring in the harbors due to the incident wave climate
- The harbor response to incident wave energy affects ship motion and, therefore design criteria

13

Tsunamis – Detection and Notification Processes

- ✓ Threat of tsunami can be classified into two distinct categories:
 - Earthquake along the Pacific Rim
 - Allows for three to five hours of warning if a tsunami is generated by the event
 - Such events are currently monitored
 - Near-shore event
 - Allows little or no warning
 - No local monitoring system currently exists, experts are researching the benefit of such a system
 - Training and education is important

Tsunamis – Detection and Notification Processes

- ✓ Current monitoring and other systems
 - Deep water buoys in the Pacific Ocean
 - State of California maintains a Warning Center
 - State Warning Center would make emergency notifications
 - Emergency Alert System
 - Emergency News Network
 - Emergency Data Information Service
 - California Law Enforcement Telecommunications System

15

Tsunamis – Detection and Notification Processes

- ✓ Los Angeles Operational Area utilizes processes to notify local governments
 - Emergency Management Information System
 - Dialogic Phone System
 - Calls to law enforcement agencies by Sheriff's Department

Tsunamis – Detection and Notification Processes

- ✓ Other systems of communications to the public exist and are available in the City
 - National Weather Service Radio
 - E-Notify
 - Hometown Television (Channel 8)
 - KKJZ (88.1 FM)
 - California Integrated Seismic Network
 - Public address systems in many City vehicles
 - Public Address System in the Marinas

17

Tsunamis – Detection and Notification Processes

- ✓ City is researching "pre-emptive telephone dialing systems"
- √ Two bills have been introduced in the United States Senate that address tsunamis
 - S.34 Global Tsunami Detection and Warning System Act of 2005
 - S.50 Tsunami Preparedness Act

Tsunamis – Detection and Notification Processes

✓ Other efforts:

- Scientific community is working with federal, state and local governments to identify early warning for locally generated or near shore events
- The USC Tsunami Center will be making recommendations to the Los Angeles Operational Area Task Force
- USGS scientists are developing models for worst case scenario run-ups of water which will assist in the City's planning and response process
- Working with Los Angeles Operational Area to create a regional plan

19

Tsunamis – Detection and Notification Processes

Examples of signage

Evacuation Route Sign

Beach Sign

Tsunamis – Evacuation and Isolation Plans

- ✓ Belmont Shore and Belmont Heights
- ✓ Greater Downtown
- ✓ Port of Long Beach
 - Bridge Closure and Detour
 - Including Westside of Long Beach

21

Tsunamis – Evacuation Mission

- ✓ Orderly and efficient evacuation
- ✓ Facilitate the flow of vehicles and pedestrians out of an area
- ✓ Prevent ingress
- ✓ Ensure emergency vehicle access

Tsunamis – Evacuation Initiation

- ✓ Declare evacuation
 - Law Enforcement can prevent entry
- ✓ People will be directed where to go
 - Parks, Recreation and Marine in conjunction with the Red Cross are tasked with providing emergency sheltering for evacuees
- ✓ Critical intersections
 - Communications Center will advise locations and missions
- ✓ Additional Options

23

Tsunamis – Evacuation Procedures

- Utilities in affected areas will be monitored for isolating and/or shutting off by appropriate personnel
- ✓ A near shore event will provide little or no warning and may require self-evacuations
- ✓ Citizens should monitor their radios and televisions for tsunami warnings
- ✓ Those in low-lying areas may need to move to higher ground
- ✓ Vertical evacuation moving upstairs in multi-story structures

Tsunamis – Public Education

- ✓ The Fire Department's Community Emergency Response Team (CERT) Program is a 6-week
 22-hour course
- ✓ Since 1992 over 2,000 residents have been trained in CERT
- ✓ The Police Department has an active Neighborhood Watch Program
- ✓ These programs prepare residents to help themselves in emergencies

25

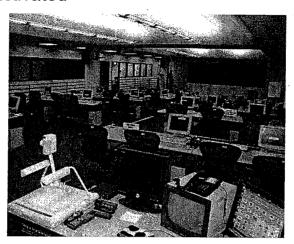
Tsunamis – Public Education

- ✓ An informational video is being developed that can be shown at community meetings and on Hometown Television
 - Video will be made by Fire in partnership with the Police and Harbor departments
- ✓ Informational brochures are being developed specific for Long Beach which will incorporate safety rules for residents and businesses

Tsunamis – Public Education

- ✓ The Long Beach Fire
 Ambassadors, volunteer citizens
 assisting the Fire Department,
 conduct the Fire Safety House
 Program
- ✓ Program teaches third grade students Fire, Safety, and Earthquake preparedness
- ✓ Tsunami component is being developed

27


City's Emergency Response Plan

- ✓ Initial response from on-duty resources Fire, Police and Public Works departments
 - Fire and Police personnel will survey districts and reposition for response
 - Fire and Rescue Boats will be staged off shore
- ✓ Department Operation Centers will be activated in accordance with the Standardized Emergency Management System

City's Emergency Response Plan

✓ City's Emergency Operational Center (EOC) will be activated

29

City's Emergency Response Plan

- ✓ Level I Minor or moderate incident which can be resolved with local resources
- ✓ Level II Moderate or severe emergency including severe weather conditions
- ✓ Level III Full activation will occur during major disasters of any nature

Conclusion

- ✓ Utilize existing Natural Hazards Mitigation Plan as a guiding document
- ✓ Interdepartmental Disaster Committee will coordinate on-going process of reviewing, planning, and development of the Tsunami Emergency Operations Plan
- ✓ Continue active participation in the LA Operational Area Tsunami Task Force

31

Conclusion

- ✓ Continue development of operation plan
- ✓ Develop and conduct multiple all hazards disaster exercises
- ✓ To fully protect Long Beach; a well coordinated Federal, State and regional approach is necessary

 •			W	
				;
				4
	•			·.
			•	
		•		
	,			
·		* 1		
				•
	·			,
	•			
			•	